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SUMMARY 

This report presents a study of the  stability and the performance characteristics of the  general 
class of earth-oriented spacecraft controlled by a gimbaled-reaction-wheel-scanner (GRWS) attitude- 
control system. The desirability of establishing  these properties is of practical  interest  because a 
gimbaled-reaction-wheel-scanner offers  the space industry a relatively simple and inexpensive self- 
contained three-axis attitude-control  package. 

The report begins with the  analytic determinatic-n of the stability  thresholds for this  general  class 
of vehicle in terms of its  six  system  parameters.  These  thresholds  separate parameter sets  that cor- 
respond to  stable  systems from those  that correspond to  unstable  systems. 

A s  an aid to  the development of the  generalized  stability  thresholds, a modification to the famil- 
iar Hurwitz technique is  presented.  This modification was extended to  characteristic polynomials of 
various orders. 

The device  that actively  controls the vehicle pitch axis  is  a  pitch reaction wheel whose associ- 
ated momentum varies periodically i n  response  to periodic pitch-axis  disturbance torques.  Because 
the  pitch  reaction wheel is  also the source of pitch-momentum bias, the study of system  stability in 
the presence of a periodically varying pitch-momentum bias  was  considered. A s  a result of this  study, 
a technique is  established for the  analysis of the  general  linearized  equation  set when it  contains 
periodically time-varying coefficients. Furthermore, certain general conclusions concerning this class 
of problem are drawn as  a result of a comprehensive numerical study.  This study concludes with an 
attempt at the analytic determination of stability  thresholds for a system with a variational pitch- 
momentum bias. 

The next area of  work i s  the consideraition of system performance i n  the  presence of a realistic 
disturbance torque model. A factor-of-merit function is  established, and a driven solar panel  assembly 
i s  introduced into the spacecraft configuration. This function, along with a digital computer  program, 
allows a potential user the means of choosing a “best”  set of system parameters from a large  six- 
dimensional array of possible parameters. The  associated  digital computer  program offers the user the 
option of maximizing the  perturbations resulting from his  disturbance model to make his findings more 
meaningful. 

The inclusion of the driven solar  panels complicates the  linearized equation set  by the introduc- 
tion of time-varying inertia terms. A technique i s  established for the analysis of the  general  linearized 
equation set when it  contains periodically time-varying inertia terms and all other terms are time 
invariant. 

Finally, the report concerns  itself with the validation of the results obtained  using a linearized 
time-invariant equation set.  The  validation procedure makes use of linear and nonlinear digital com- 
puter simulations and  the Floquet stability  criterion technique. 

Numerical examples are  presented  to  illustrate many of the topics  discussed in this report. 
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THE STABILITY AND  PERFORMANCE  CHARACTERISTICS OF AN  EARTH-ORIENTED 
GIMBALED-REACTION-WHEEL-SCANNER CLASS OF SPACECRAFT * 

by 

H. Richard Freeman 
Goddard  Space Flight Center 

CHAPTER I 

INTRODUCTION 

Stabilization and control, as  it  pertains  to unmanned earth-oriented satellites,  covers the entire 

spectrum from ful ly  active  to  fully  passive  control. When designing a control configuration for the pur- 

pose of fulfilling a specific mission, one  must consider which class of control  will best meet the mis- 

sion  requirements.  The choices include fully active,  semiactive, and fully  passive  attitude  control. 

Figure 1.1 defines the orbit plane a s  well as the  inertial and  orbit reference  coordinate systems. 

The orientation of the orbit plane is  assumed to be inertially fixed in space with respect  to the sun;  

however, the center of the orbit plane rotates about the s u n  with the earth. A s  the spacecraft  travels 

in  the orbit plane,  its velocity  vector is defined to be the direction of i ts  positive  roll  axis.  Positive 

yaw i s  defined to be the  earth-pointing  vector  referenced from the  spacecraft. The spacecraft pitch 

axis is perpendicular  to  the orbit plane in such  a direction  that  the roll,  pitch, and yaw axes form a 

right-handed system. The spacecraft orbit-velocity vector is  parallel with and directed  opposite to  the 

spacecraft pitch axis.  This  is  illustrated by Figure 1.2. 

In a fully  active  spacecraft control system,  attitude  and,  possibly,  rate  errors  are  sensed in each 

of the three spacecraft  axes.  The  sensors provide inputs to the control mechanisms that force the atti- 

tude and/or rate  errors to zero,  the  spacecraft equilibrium state.  These control mechanisms might in- 

clude momentum storing  reaction  wheels and/or mass-expulsion-torquing systems. When  momentum 

storage is accomplished by the  use of reaction wheels, a means of  momentum control must be  available 

*Submitted as a thesis  in  partial  fulfillment of the  requirements for the  degree of Doctor of Philosophy  in  Electrical 
Engineering,  University of Maryland,  College  Park,  Maryland, May 1970. 
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y r  (Out  of  Paper) 

' r  

Figure  1.1-Definit ions of the  spacecraf t   orbi t   p lane  and  the  inert ia l  and orbi t   reference  coor i i -  

nate  systems.  The  plane  of  the  paper  defines  the  orbit  plane.  The  orbit  reference  axes  travel  at 

orbit   velocity  about  the  earth. 

to unload or to unwind the wheels. Unloading could be accomplished by the use of mass  expulsion or 

through the  use of the environmental torques such as gravity-gradient torques, magnetic torques, and 

so forth. It should be noted, however, that  a favorable spacecraft  inertia distribution is  required to 

properly utilize gravity-gradient torquing. 

A spacecraft with a ful ly  active control  system has an excellent performance potential.  Its  sen- 

sors can be designed to afford a high degree of pointing accuracy, and its control  law can be estab- 

lished  to give decreased  sensitivity  to internally as well as externally  generated torque disturbances. 

Spacecraft with a fully  passive control system rely wholly  on environmental torques for their 

means of control.  The  physical configuration is  constrained,  because for these  spacecraft..  a favorable 

inertia  distribution must be presented with respect  to  their environment  for earth stabilization  to be 
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Figure  1.2-Spacecraft  axes.  The  plane of orbi t  i s  the X, z plane.  The  orbit-velocity  vector 

points  into  the  paper.  For  earth-oriented  spacecraft, X = x ~ ,  y = y r ,  and z = z r .  

achieved. If the  spacecraft moments of inertia  are properly c,hosen, the  gravitational torques  exerted 

upon the vehicle  cause the spacecraft  to align itself i n  a desired earth-pointing orientation. Neither 

onboard  error sensing nor actively mechanized torquing systems  are required. However,  in considsring 

the advantages of the implied sin~plifications, one  must also consider the problems of inertia augmen- 

tation,  passive dampers, the reduction in pointing accuracies, and the increased  sensitivity  to  inter- 

nally and externally generated torque disturbances. 

An obvious compromise between the two types of systems already discussed  is a semiactive (or 

semipassive) attitude-control system. A variety of semiactive configurations might be cited a s  examples 

of this type of control. For instance, Figure 1.3 illustrates  the  use of a constant-speed pitch reaction 

wheel to afford  pitch-momentum bias  to an otherwise fully passive gravity-gradient spacecraft.  This 

additional momentum vector normal to  the orbit plane increase;  the  spacecraft. pointing accuracy by 

augmenting the environmental torques acting upon the  fully  passive  vehicle with gyroscopic  torques 

caused by the  presence of the pitch-momentum bias. 

The  gyroscopic  effect of this  constant-speed wheel has  a rate-seeking property. Gyroscopic 

torques will always  act  to align the rotor spin vector with the angular rate vector of the spacecraft. If 
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Figure  1.3-Pitch-momentum  bias  control  augmentation. 

one recalls  that the spacecraft  rotates about its pitch axis once each  orbit, affording the  spacecraft a 

constant pitch rate, the usefulness of this pitch-momentum bias should become apparent. 

A slightly more complex example might be one in which a control-moment  gyro* i s  used  to gener- 

ate the pitch-momentum bias  as shown  in Figure 1.4. This is desirable  because,  in addition to the 

pitch-momentum bias, the control-moment gyro affords  system damping as  a result of the  relative motion 

between its fluid-immersed gyro rotor  and that of the main  body to which the rotor is gimbaled. For a 

single-axis gyro system,  the gimbal axis must lie in the roll-yaw plane so  that  the rotor spin  axis  lies 

nominally along the  spacecraft pitch axis. 

:*A control-n~on~ent gyro is  one  that  exerts  control  torques on the  spacecraft, as opposed  to  one  that is used to 
sense  attitude  errors. 
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Figure  1.4-Control-moment  gyro  attitude-control  configuration. 

A third  and  more  complex  example  constitutes  the  subject of this   disser ta t ion.  In the  spacecraft  

shown  in  Figure 1.5, the  roll   and  yaw axes are passively  controlled  and  the  pitch  axis is actively  con- 

trolled.  The  active  portion of the  control   system  al lows a high  degree of pointing  accurccy  in  pitch as 

well  as a decrease  in   sensi t ivi ty  to internally  generated momentum disturbances  that  might be  produced 
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Figure 1.5-Gimbaled-reaction-wheel-scanner control  configuration. 

aiL?:tg this controlled axis. Such disturbances might, for example, be  produced by a  large in-flight 

tape recccrder or by actively driven solar  panels.  The  passive portion of the control system  offers  the 

advantage of the simplicity inherent in  a fully passive  system, and the associated  critical  constraints 

of iwrtia distribution  that plague a fully passive  system  are somewhat relaxed. The spacecraft  is  de- 

signed so  that a single reaction wheel, when  properly oriented, provides a pitch-momentum bias  that 

tightens  the  passive control of the roll-yaw axes.  This reaction wheel is  gimbaled to the spacecraft i n  

i ts  roll-yaw plane by means of a torsion wire spring and an eddy-current damper. The  gimbal, whose 

axis is located  at an arbitrary angle in the roll-yaw plane, provides both roll and  yaw  damping as a :e- 

sult of spacecraft roll-yaw coupling.  Gravity-gradient  torques provide the mechanism necessary  to un- 

load the reaction wheel when it  deviates from its  bias  speed  as a result of spacecraft pitch perturbations. 
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Pitch control is implemented by actively controlling the  reaction wheel about its  bias  speed.  The 

control error signal is derived from a  conical infrared horizon scanner  whose  rotating  optical prism is 

physically mounted  on the reaction wheel rotor. Because  all  functions  are packaged into one unit,  the 

controller is called  a gimbaled-reaction-wheel-scanner (GRWS) attitude-control  system. 

The  purpose of th i s  dissertation is to  study  the  stability and  performance characteristics of earth- 

oriented spacecraft  that  are controlled by a gimbaled-reaction-wheel-scanner. Establishing  these prop- 

erties is of practical  interest  because  a gimbaled-reaction-wheel-scanner offers  the space industry a 

relatively  simple,  i-lexpensive, and self-contained  three-axis attitude-control  package.  To date, only 

sketchy  attempts  to  analyze  this class of artificial  satellites  have been  made,  and these  analyses have 

dealt mainly with a very special combination of spacecraft  parameters  (Reference 1). 

The  dissertation  discusses in Chapters 3 and 4 the analytical determination, in terms of the s ix  

system  parameters, of the stability  thresholds for the general class of spacecraft controlled by a 

gimbaled-reaction-wheel-scanner. These thresholds separate parameter sets that  correspond  to  st.able 

systems from those  that correspond to  unstable  systems.  Because the  equation  set that mathemati- 

cally  describes the  system is highly coupled and extremely  nonlinear,  it  was necessary to derive  the 

stability  thresholds from a  set of equations  that were linearized about the  desired spacecraft  equilib- 

rium position. 

A s  an aid  to  the development of the  generalized  stability  thresholds, it modification of the  famil- 

iar Hurwitz technique i s  presented. Chapter 4 concludes with the  extension of this modified technique 

to polynomials of various  orders. 

The device  that  actively  controls the  vehicle  pitch axis  is the  pitch  reaction  wheel. the associa- 

ted  momentum  of  which varies periodically in response to pitch-axis  disturbance torques.  Because 

the  pitch  reaction  wheel is  also t1.5 source of the pitch-momentum bias, the  second major area of work,  

described in Chapter 5 ,  was  a st,ldy of system  stability in the presence of a periodically varying pitch- 

momentum bias. A s  a  result of this sLudy, a  technique  was  established that facilitated the analysis of 

the general,  linearized  equation  set when it  contained  periodically  time-varying  coefficients. It also 

proved possible, a s  a  result of a  comprehensive numerical s tudy,  to reach  certain  general conclusions 

concerning  this  class of problem. Chapter 5 concludes with  an attempt to determine analytically  sta- 

bility thresholds for a  system having a periodically varying pitch-momentum bias. 
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The third major area of  work was the  consideration of system performance in the presence of a 

realistic  disturbance torque model. In Chapter 6, a factor-of-merit  function  was established and a 

driven  solar  panel assembly was  introduced  into the spacecraft  configuration.  This  function  along 

with a  digital computer  program allows  a  potential  user  the  means of choosing an optimum set of sys- 

tem parameters from a  large,  six-dimensional array of pxs ib le  parameters. The  associated  digital 

computer  program offers the user the  option of maximizing the perturbations  resulting from h i s  disturb- 

ance model  to,  make his findings more meaningful. 

The  inclusion of the driven  solar panels  complicates  the  linearized equation set by the  introduc- 

tion of time-varying  inertia  terms. A technique is  established in Chapter 7 that  allows the analysis of 

the  general,  linearized  equation  set when it  contains  periodically  time-varying  inertia  terms, and 

all other terms are time invariant. 

The final  chapter of this  dissertation  concerns  the  validation of the results in Chapters 4 and 6,  

obtained though the use of a  linearized  time-invariant  equation set. The validation procedure makes 

use of linear and nonlinear  digital computer simulations, as well as the Floquet stability  criterion 

technique. Chapter 8 concludes with a numerical example that illustrates many of the  topics dis- 

cussed in this  dissertation. 
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CHAPTER 2 

DEVELOPMENT OF THE SYSTEM EQUATIONS 

2. I General Discussion 

The  spacecraft   configuration  that   has  been  chosen  for  study is shown  in  Figure 2.1. This   skewed 

unsymmetric  configuration  was  studied  in  order  not  to  prejudge  any  conclusions  that  might  have 

seemed  obvious  had  certain  symmetries  been  assumed.  Shown  in  the  f igure  are  the  main  spacecraft  

body  (body  number l), the  gimbal  and  wheel  combination  (body  number Z), and  the  wheel  rotor  alone 

(body  number 3). 

We define  the  axes  sets 

and 

The  iner t ia l   axes   are   f ixed  in   the  orbi t   p lane  and  have a fixed  orientation  with  respect  to  the  sun.  The 

orbi t   reference  axes   t ravel   a t   orbi t   veloci ty   about   the  center  of the  ear th .   They  descr ibe  the  desired 

orientation of the  coordinates of an  earth-oriented  spacecraft .   The  plane  containing  both xI and ZI, or 

both xr and z,., is defined as the  orbit  plane. 

We also define  the  specif ic   axes  

1 controlled  axes of main  body 
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Figure  2.1-Assumed  configuration  for  the gimbaled-reaction-wheel-scanner spacecraft. 
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and 

X, E y 3  s principal axes of wheel rotor alone, 

?- c:] 
and the  inertia  tensors 

Q = - q 2 1 )  1,(22) -r 1(23) I I inertia  tensor of 
main  body 

0 

inertia  tensor of 
gimbal alone 

It was  assumed  that 
the products of inertia 
equal  zero. 

and 

It was assumed  that 
the  products of inertia 
equal  zero and that 
1,(11) = 1,(33). 

The  reaction wheel scanner is gimbaled to the spacecraft by means of a torsion wire spring and  an 

eddy-current viscous damper. The gimbal axis is mounted on the spacecraft  at  a  positive rotation /3 
from the positive roll axis in  the roll-yaw plane. 
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The gimbaling parameters are 

and 

gimbal angle = y.  

torsion wire spring constant = k g’ 

viscous damping coefficient = E , .  

It is assumed that the centers of mass of the  three bodies  are  coincident and that  they are located 
” - 
” 

at the origins of X , ,   X , ,  and X,. 
I 

2.2 Active  Pitch Loop 

Attitude error sensing for the  actively controlled  pitch loop is provided by the conical infrared 

horizon scanner portion of the gimbaled-reaction-wheel-scanner. The  apex of the  scan cone i s  

the origin of the x, coordinate system [which i s  defined a s  the (x,. y 3 ,  z,) coordinate system] with 

the  scan  axis in the  direction of the positive y, axis.  The  scanning motion results from the  rotation of 

an optical prism  which is attached  to  the reaction wheel rotor. Control logic maintains a minimum 

wheel speed  to  ensure proper functioning of the  scanner. A portion of the  scan cone normally inter- 

cepts the  earth while the remainder of this cone scans through cold space.  The higher earth tempera- 

ture relative  to  that of space  results i n  an earth pulse which i s  processed  electronically  to provide 

spacecraft  attitude information. 

- 

If the  rotation angle ,6 and the gimbal angle y ,  as defined in Figure 2.1, were  both equal  to zero, 

the scanner output would be a simple function of the spacecraft pitch attitude. But  in general,  these 

angles  are not zero, and the  scanner output must  be defined a s  a complex function of spacecraft pitch 

angle 8, spacecraft roll angle I$, and gimbal angle y .  

The orbit reference  coordinate z ,  defines the local  vertical, and the positive y 2  axis  defines the 

scan cone axis. 

The  scanner error i s  defined equal  to the  angle /3 when the z2 axis  lies in the zry2 plane. A posi- 

tive scanner error 8, is  defined as a positive rotation of the spacecraft about  the positive y 2  axis. 

The minimum angle between the positive z2  axis and z r y 2  plane has the magnitude (8, t @). 

In order to derive an expression  that  relates 8, to 8, q5, and y ,  reference is made to Figure  2.2a 

and 2.2b. 
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Figure  2.2-Horizon  scanner  related  axes; (a) view of the  plane of the  local  vertical  and  scan  cone  axis, 
and (b) view  looking  down  the  scan  cone  axis. 

We define e a ,  e Z y ,  and eZz  as unit vectors whose directions are parallel  to x2, y2,  and z2, re- 

spectively.  Similarly, erx ,  e ry ,  and e,, are unit vectors having the  same directions a s  x,, y,, and z,, 

respectively. 

The vector cross product e Z y  x e,, defines  a vector normal  to the  zry2 plane a s  shown  in Figure 

2.2b. If this vector i s  normalized and the  result dotted  into eZz,  the  resulting dot product is the  cosine 

of the  angle between e Z y  x e,, and eZz:  

The  resulting  expression relating 0, with 4 ,  0, and y may be written 

tan (8, t p)  = 
sin (8 t 13) cos qb 

cos (0 t /3) cos 4 cos y - sin 4 s in  y ' 

The block  diagram  shown in  Figure 2.3  defines the active pitch  control loop. 

T ,  i s  the torque applied to  the reaction wheel rotor, - T ,  i s  the resultant reaction torque applied 

to the spacecraft, 6 i s  the error signal at.  the output of the lead compensation network, and 0, i s  the 

scanner  signal output. (Note that wheel torque acts  to reduce 8, and  not necessarily 8.) The equa- 

tions that describe  this control  loop are 

13 



and 

L e a d  

Compensation 
Network 

I Motor  Torque 
Proport ional 
To  Error 

Tachometer 
Feedback 
Gain 

L 

L 

Pitch  Motor 
M~~~~~~~ Coef f i c ien t  

B i a s  O f  V iscous 

Var iat ional  
Wheel 
Momentum  Frict ion 

Tota l  
H w  Wheel 

Momentum 

Figure 2.3-Active pitch control  loop. 

2.3 Dynamic  Equations 

An Euler  rotational sequence of yaw, roll, and pitch has been chosen in  order  to relate the orbit 

reference axes X ,  to the spacecraft main body axes X , .  In order to simplify the notation throughout 

the development of equations,  sin (angle) will be written S (angle) and cos (angle) wil l  be written 

C (angle).  The  coordinate transformation from X ,  to X I  follows. 

= 2 

r \ . %  - 

1) Yaw rotation 

14 
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2) Roll rotation 

3) Pitch  rotation 

The total transformation matrix is  the product of the 3 rotational  transformations.  Thus, 

or 

The A lr transformation matrix defines the matrix that  transforms from x r  into x coordinates 
- I 
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The notation  used to expand the A , ,  matrix into i ts  elementary form is 

The A, ,  transforma - ttion ma ,trix  that defines the  coordinate  transformation from the axes of the main 

body of the spacecraft x1 to  the gimbaled wheel axes X, follows in  two steps.  Thus, 
, "  2 

-.1[.1? 

x; cp 0 -sp x1 

followed by 

or 

X ,  = A 2 , X 1 .  
= 2 

14 2 -L 

Note that X = A i t X ,  = A12F, .  

The  transformation from the gimbaled wheel axes X, to  the wheel rotor axes X, i s  
14 14 

or 
'4  '4 
X ,  = A, ,X, .  

Note that X, = ,, , = A,,X,  . 
2 A-1; 14 
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Since  the  transformations described throughout this development are orthogonal, Aij' = A:.  

Next,  the  kinematic relationships are  developed for bodies 1, 2, and 3. We define 

where w l i j  i s  the  ith component of angular velocity resulting from a jth angular rotation of  body 1 

(i = x ,  y, z ;  j = 4 ,  8 ,  $). 

1) Yaw rotation 

2) Roll rotation 

3) PitKh rotation 

The  resulting  total angular  velocity of  body 1, referenced to  the orbit reference axes and in terms 

of Euler angles and Euler angle  rates,  is 
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But the spacecraft  travels with  an orbital  velocity -Q2,e,y (i.e., with a  velocity of magnitude Qo 

whose direction  corresponds to the  negative pitch inertial  axis), therefore 

and 

where 0 lI i s  referenced  to  the inertial frame  and W lr  i s  referenced to the  orbit  reference frame. From 

this  point,  all angular rates Ok are referenced  to  the inertial frame ( k  = 1 , 2 , 3 ) .  

The total angular velocity of body 2 can be written a s  Wz = W1 (transformed to the body 2 coordi- 

nate  set) plus the angular rate of the gimbal. Note that  the gimbal is  only free to move about its x axis. 

The total angular velocity of body 3 can be written as W3 = Wz (transformed to  body 3 coordinates) 

plus the angular rate of the wheel rotor. 



r- 

O3 = A3,Z2 t[-]= A 3 , 0 ,  t 

The  system  dynamics are developed by writing one vector equation for each of the three bodies 

considered. 

Extended reference is made throughout the subsequent  text to Goldstein  (Reference 2:. When 

Newtonian mechanics are applied  to a rotating body, the following relationships become important. If 

we define G as an arbitrary vector quantity, then 

dG - dG t dG 

(as observed in (as observed in (as observed in 
body coordinat.es) space  coordinates) rotating coordinates) 

but 

dG = G x dQ, 
(in rotating coordinates) 

where dfl i s  the rate of rotation.  Therefore 

G - G t w x G .  - 

(as observed in (as observed in 
space  coordinates) body coordinates) 

where w is t h e  angular rate of change of G. Finally, the  three vector equations  that  result from apply- 

ing Newton’s second law to the  three  bodies chosen  are the following: 

T, = H2 t 0, X H , ,  

and 
T, = H 3  t W, x H , ,  

where T, i s  the  total torque applied to body k ( k  = 1.2 .3) .  H, is  the tot.al momentum  of body k ,  and 

Ok is the  total angular velocity of body k.  
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The  components of the  vector torque T, include  gravity-gradient  torques,  control  torques (both 

reaction  wheel and  gimbal spring  damper),  disturbance torques, and constraint  torques. 

Expanding the  left-hand side of each of the  vector equations, we obtain 

where T,, i s  the  total gravity-gradient torque acting upon the kth body, T,, is  the  total  control 

torque acting upon the  kth body, T,, i s  the total  disturbance torque acting upon the kth body,  and 

T,, i s  the total  constraint torque acting upon the  kth body. 

Detailing  the  vector  equation for the  reaction wheel rotor, we obtain 

T, = H 3  t W 3  x H , ,  

where H, = Q3W3. 

After expanding, 

Detailing  the  vector  equation for the gimbal  and  wheel combination, we obtain 

T, = H2 t O2 x H 2 ,  

where H2 is the momentum  of the gimbal alone  plus  that of the wheel rotor transformed  int.0  body 2 

coordinates: 

H, - x Q2W2 t A,,H,. 

After expanding, 
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Finally,  detailing  the vector  equation for the main  body alone, we obtain 

T, = H,+ 0, x H,, 

where H, = (DIW1. 

After expanding, 

Detailing  the left-hand side of each of the vector equations, we recall  that T k ,  the torque acting 

upon each of the  three bodies, i s  composed of four components. 

Tk = T k  1 ' T k 2  t T k  3 ' T k 4  . 
(gravity gradient)  (control)  (disturbance)  (constraint) 

Each of these components will be developed separately. 

For the determination of T , , ,  Sabroff (Reference 3) showed that  the  gravity-gradient torque acting 

upon an arbitrary rigid body  may  be defined a s  follows. 
2 

Assume that X ,  represents the body axes of the k th body  and that  these  axes  are  located  at the 
,L 

center of mass of the body. Relate the body axes xk  to  the orbit reference axes Xr by the  coordinate 

transformation 

.-" 

- A  z 
k - k r X r p  

where 
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and 

If the inertia tensor for the  kth body i s  defined a s  

then the gravity-gradient torque vector acting upon the kth body i s  described by the following 

expression: 

From this generalized relationship,  it i s  possible  to  detail the gravity-gradient torques acting upon 

each of the three  bodies under consideration. The inertia  tensors used in the evaluation of these grav- 

ity-gradient  torques are 

I, = 

and 
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where I ,  is the sum of Q,,  the  inertia  tensor of the gimbal, and Q, , the inertia tensor of the wheel 

rotor, transformed to the gimbal coordinates. 

The control  torques T,, were defined  to  include both the  torques  resulting from the  presence Of 

the  actively controlled  reaction wheel and those  resulting from the gimbal spring damper. 

Detailing the control  torques acting upon each of the  three bodies, the following relationships  are 

found to  exist. 

where T, i s  the torque applied  to  the wheel rotor  minus the frictional torque. 

Since body 2 represents the combined wheel and rotor,  the rotor torque T, does not appear in T,, 

either as a direct torque or as  a  reaction  torque. 

The  reaction torque of the  spring damper  transformed to body 1 coordinates T,, i s  

For the purpose of detailing the disturbance  torques,  it was assumed  that all  disturbance torques 

are  generated in the orbit  reference set of axes and are defined as T, in this  set of axes. Under these 

assumptions, the following relationships  are found to  exist. 

and 
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Finally it is necessary  to  detail  the  constraint  torques  acting upon each of the  three  bodies. 

When the  constraint  torques  act upon the wheel rotor alone,  the rotor is free to  rotate  about its 

Spin axis, y3. and i s  constrained  about its x 3  and z3 axes.  Therefore, 

When the  constraint  torques  act upon the gimbaled  wheel combination,  the gimbal is free to 

rotate  about its x 2  axis and is constrained  about i ts  y 2  and z2 axes.  Therefore, 

The  constraint  torques  acting upon the main  body alone  are  the  reaction from the body 2 constraint 

torques transformed to  the body 1 set of coordinates.  Therefore, 

At this point the three  vector equations  are completely  determined. Although these vector  equa- 

tions allow u s  to write  nine separate  equations,  clearly not all of them are  independent.  The set of 

independent  equations  are  those  nondegenerate  equations  that remain after  the  constraint  torques are 

substituted into  the  three  vector equations.  Detailing, we see that 
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and 

The  resulting  nondegenerate  equations  are 

H3y ' W 3 z H 3 ~  - W3xH3z = T31y ' T32y ' T 3 3 y '  

'2x ' W2yH2z - 02zH2y  T21x ' *22x  T23x 

and 

These  equations  are  functions of the  variables and the derivatives of the  variables  listed below. 

Clearly,  the fully expanded equations  will be extremely  nonlinear and lengthy;  however, they do con- 

stitute  a valid  complete set of equations for the  generalized  spacecraft  configuration under study.  The 

variables  are 4,  the spacecraft  roll  angle, 8, the  spacecraft pitch angle, $, the  spacecraft yaw angle, 

y ,  the  gimbal angle, 6 ,  the  wheel rotor angular  velocity, and e ,  the electrical  signal out of the  lead 

network in  the  active  pitch  loop. 

The sixth  equation  required is Equation (2.2). the electrical error equation, 

= [ ~ ~ e ,  t e, - ~ ~ 2 1 .  

Note that 13 and Hb also appear in the  final  set of equations, but these  are  system  parameters and 

not variables. We define 
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3 

x =  
i=l  

Appendix A contains a detailed development of the  dynamical and kinematic  equations.  Expansion 

of the  left-hand side of Equations (2.4) results in the following expressions: 

2a31(2i)m1i t Ca3,(2i)hli t a3,(21)>; t a3,(21)i; t h' I 

Note that when the rotor i s  assumed  symmetric,  the last term vanishes  because 

13(11) = 1,(33). 
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Expansion of the right-hand side of Equations (2.4) yields 

T 2 ,  = 3a:[12(33) t I,(ll) - 1,(22) - 1,(22)]a2,(23)a2,(33) - k g y  - BgP, (2.13) 

In  order to  detail  the  five nondegenerate equations of motion, it is necessary  to define 

(2.17) 
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and 

cec+ - ses+slb ces$ t S S S ~ C : / ~  

A, ,  = -c,.ps+ C@fi 

secg t ces4s:/l ses+ - ces4cib 

Because  all  transformations  are  orthogonal, 

and only A,, or A,, will be given. 

A21 = 

A,, = 

*23 = 

(2.19) 

c -&Sa 0 &Ca 

A,, = 0 0 0 

-&Ca 0 -&Sa 
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- saspcy  SaSy 

= CY 

and r-aCpSa i.sysasp - aCaSPCy aCaSy 6ysa aSaSP - drCaCPCy i.sacpsy 1 
A,, = I S Y S P  -i.Sy i.CPCY 

licacp - asaspcy - );.SyCaSP -pcyCa t l isasy -,cusp - j c a c p s y  - drsacpcy J. 
(Recall   that  /3 is a constant.) 

The  equat ion  set  for this  complex  eleventh-order  system is now  completely  defined.  However, 

these  equations  would  be  prohibitive  even  to  write  down,  and  linearization  must  be  performed  before 

the  discussion can be  continued. 
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CHAPTER 3 

DEVELOPMENT OF THE  LlNEARlZED  EQUATION SET 

3. I General Discussion 

In general ,   any  nth-order  system  can  be  represented by the  vector  equation 

x = f(X) , 

where 

x =  

and 

X =  

f 2  

x n  . .  

where xl, x2, . . . , x ,  are   the   var ious   sys tem  s ta tes .   Also ,  

f(X) = 
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where f,(x) is some function,  linear or nonlinear, of the  system state  variables. 

This  vector  equation  can be rewritten a s  shown below. 

X = A X  + G(X) , 

where 
" 

x 1  

x2 
X =  - - 

'n 
" 

state variables , 

Jf n 

JXn 

. . .  - 

and 

Expanding the  vector  equation a s  shown makes it possible to represent all of the  linear  first-order 

terms by AX while G(X) represents  all of the  other  terms.  Since by definition, G(Xo) is  zero, then in 

order to  investigate  stability i n  the neighborhood about which the  system  was  linearized, it is only 

necessary to investigate  the  stability of the  system of equations X = AX. 

Clearly  the  system  represented by these  equations i s  asymptotically  stable within some neighbor- 

hood of X, if and only if all of the  eigenvalues of A have negative  real  parts.  Conversely,  the  system 

is  unstable if  any  of i ts  eigenvalues  have  a  real  part which is positive or equal  to  zero. 
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Because  the A matrix was  fabricated by the  technique of linearization, any conclusions  reached 

concerning  either  stability  and/or  system performance must  be verified.  Clearly,  these  conclusions 

will be accurate for  some limited  variation of the state  variables about X,, their  equilibrium state. 

However, whether or not this limited range of variation i s  sufficiently large  to be of practical impor- 

tance  remains  to be determined. 

Aside from the necessary verification suggested  above,  situations that are  expected  to  give  rise 

to large deviations of any one state variable must be considered  separately.  Chapters 5 and 7 discuss 

in detail problems of this nature. 

3.2 Linearizing the  General System Equation Set 

A gimbaled-reaction-wheel-scanner-type spacecraft would fulfill  conveniently  the  mission  require- 

ments placed upon a  meteorological or observatory class of spacecraft.  This  class of vehicle  is ex- 

pected to maintain a  single orientation in space, and its meteorological  sensing  devices  are fixed to 

the main spacecraft body. 

For the ease of locating sensors and experimental  packages.  it i s  of practical  interest to  define 

the equilibrium state vector a s  follows: 

x, 1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Q C  

Only the wheel rotor speed  has  a nonzero equilibrium condition, and this equilibrium  speed  can be 

found  from the expression defining rotor torque T , .  
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In order to linearize the  five  nondegenerate  equations  presented  at  the end of Chapter 2, each 

must be expanded into  a  Taylor  series  expansion about the  system  equilibrium. All  terms of second 

order or higher are  discarded. 

The  Taylor  expansion for a function of n state  variables, (x1,  x2, . - , xn>, can be written 

When the expression f(xl . . . xn) i s  sufficiently  complicated, it is co'nvenient to break up this 

expression and to write 

f(xl . . . xn) = fl(xl . . . Xn) . . . fm(X1 . . . xn> 

or, in closed form, 

m 
f(xl . . . xn) = f i (X1  . . . Xn) , 

i = l  

It is then possible, and probably more simple, to expand each of the fi(xl  . . . xn) into a  Taylor  series 

separately and finally multiply the resulting  expressions together.  The  two results will be identical 

a s  long a s  terms of second and higher order are  discarded. 

It i s  possible to  completely  define  the  five  nondegenerate  equations of motion in terms of the  linear- 

ized expressions for wl. 01, and the  coordinate  transformation  matrices, in view of th i s  simplification. 

Detailing, we obtain 

" 
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and 

Because  all transformations  are  orthogonal, it was assumed  that t,he linearized  transformation  matrices 

are related by A i :  = A& while their elements are  related by apg(ij) = agP(ji). For this  reason, only 

A,, or A,, will be written, a s  was  done with the nonlinear  coordinate  transformations. 

A21 = 

A,, = 

= 1 YCP 

SaCP t CaSP  -yCn -.SnSf3 t CnCP 
L 
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and 

A,, = 

Note that a is  not a  state  variable and cannot  be  linearized out. 

3.3 Linearizing the Scanner Error Equation 

The scanner  equation  was  developed in  Section (2.2) and can be written as  

sin (0 t /3) cos qi 
cos (0  t p) cos q5 cos y - sin qi s in  y 

tan ( 0 ,  t p) = 

Taking  the arc  tangent and linearizing, we obtain 

or 

Evaluation of this  expression  gives  rise  to  the simple  result 

e , t p = e + p  

3.4 Determination of Rotor Equilibrium Speed 

The  useful  wheel torque was  derived in Section (2.2) and can be written as  

T ,  = k T I T l d s  t 0, - T z i  - C,&1,(22) t C,H,] - Bf&1,(22). 

Solving for the  equilibrium momentum, we obtain 
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1 

where iz in  this  expression is the  actual wheel speed. Linearizing  about a small variational wheel 

speed, we obtain 

where a in this  expression i s  the  variational wheel speed.  Finally, eliminating the  bias momentum, we 

see that 

T ,  = kT[T18, t 8, .- T,I - Ctd3(22) ]  - B,ci1,(22), (3.6) 

where a is  variation wheel speed. 

3.5 Resulting  Linearized  Equations 

After much algebraic manipulation, the  linearized  set of equations of motion can be written a s  

shown on the following pages. 

Recall  that H b  i s  the pitch-momentum bias and i s  considered  const,ant. Itsderivative. f i b  =a13(22), 

is carried in these  equations for its w e  in Chapter 5. 

T 3 y :  

I , (ZZ) i i  + 1,(22)ii = T ,  = k,T,4  . -  [kTCt1,(22)  t R,13(22)]ci - kTT2i  t k T O .  (3.7) 
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I 

T l X :  

I,(l2)8 - { I,(ll) t S2p[Z2(33) t 13(11)]}4 t { 1,(13) - SPCp[I,(ll) t Z2(33)]}& 

t [-2a0~,(32)] e t { a0~,(13) - a0r,(31) - a,spcp[1~(33) - 1,(22) - 1,(22) t 1,(11) 

t 213(11)] - S/3C,BHb}& t { QoIl(ll) t a01,(33) - Q0Z,(22) t aoS2p[I2(33) - 1,(22) 

- 1,(22) t 1,(11) t 21,(11)] t S2,BHb}& t { CPBg - S,BHb - aoSP[I2(33) - 1,(22) 

- 1,(22) -t Z,(II) t 1,(11)]}? t [-3a;z1(12)J e t { 3a,2[1,(33) - 1,(22)] - a; [1,(22) 

- 1,(33)1 - s2pa;[1,(22) t 1,(22) - 1,(11) - 1,(11)j t s ~ P ~ ~ H ,  - 3n;s2pp2(22) 

t 1,(22) - 1,(11) - 13(11)]}4 t { a;1,(31) - S2,2SpCp[I3(22) t 1,(22) - 12(11) 

- I,(ll)] t QoSPCPH,}$ t { -SpaI,(22) t Cpkg - Sp3flESpCp[12(ll) - 12(33)] 

- 3Q;S2pCp[Z2(22) t 1,(22) - 12(11) - 13(ll)]}y -[3a;I1(23) t Zl(32)QE]. (3.9) 
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0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

a0 
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Observation of the  right-hand side of the  linearized set of equations, however,  shows that if X, is 

to  represent an equilibrium state for the  system,  certain  constraints must be placed upon the  physical 

configurations of bodies 1,  2, and 3. In particular,  the gimbal alone must have spherical symmetry so 

that I,(ll) = 1,(22) = 1,(33). Also,  the product of inertia  terms  associated with the main  body  must be 

zero. 

Although certain very specific  combinations of body 1 cross-product  inertia terms and gimbal 

inertia  terms  give  rise  to  the  desired  equilibrium,  these  are of no practical  interest. 

A s  a  result of the  physical  constraints  placed upon bodies 1,  2, and 3, the  set of linearized  equa- 

tions have been rewritten and presented in  their final form  on the  following  pages. 

Recall  that p is the gimbal axis  angle as  shown  in Figure 2.1 and is  constant. H b  is the  pitch- 

momentum bias and represents  the  bias wheel momentum about which the  pitch  wheel is actively  con- 

trolled.  The & term that  appears in the  linearized  equations is the  variational wheel speed  about th i s  

bias.  Finally,  the  state  variables 6 and i are error signals  associated with the active pitch  loop and 

appear  because of the  lead network  in that  loop. 

T 3 y :  

13(22)d t 1,(22)a = T ,  = k,T,O - 1,(22)(kTC, t B,)U - k,T,i + k T 8 .  (3.12) 

(3.13) 
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Error Equation  (2.2): 

(3.15) 

(3.16) 

The  terms ii1,(22) = ti, have  been  included for use  in  Chapter 5. 
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CHAPTER 4 

STABILITY 

4. I General  Discussion 

In order to  investigate  system  stability  it would appear  that  one must deal with a complex eleventh- 

order system of six  equations. However, one immediate observation that can be  made  from the linear- 

ized equation set   i s  that  the  six  equations decoupled into two sets of three, one of fifth order  and the 

other of sixth order. The T , , ,  TI,,  and T,, equations  are  functions of 4 ,  $J, and y .  while the  equa- 

tions for T,,, T,,, and 6 are functions of 0, a ,  and e .  

The fact  that  the  equation set  decouples  requires  that  the  variations of the  system  variables as 

well as variations in the pitch-momentun bias H, be  small. In practice, however, H ,  variations are 

often large, and the coupling  that results must  not be overlooked when arriving at the requirements for 

total  system  stability.  This topic i s  considered in detail in Chapter 5 .  

The fact  that  the  six  equations can be decoupled  could  have  been anticipated, a s  gyroscopic  terms 

always contain  the  products m i ,  w j ,  where (i = 1, 2 ,  3; j = 1, 2 ,  3; i # j ) .  A s  only first-order terms have 

been retained, only the  gyroscopic coupling terms that  involve w have been kept because u Y  alone 

contains a constant term (i.e., w l Y  = 6 -. Q0, where f lo  i s  constant).  Clearly, gyroscopic  terms that 

appear in the pitch equations  are not functions of m y ,  whereas those  that appear in the roll and yaw 

equations  are. For this  reason, roll i s  coupled to yaw, but neither  roll nor yaw i s  coupled to  pitch. 

Y 

It is of interest  to determine the  stability  thresholds for the generalized class of spacecraft whose 

attitude i s  controlled by means of a gimbaled-reaction-wheel-scanner. A threshold of stability  sepa- 

rates  those  spacecraft configurations which are  stable from those  that  are  unstable. 

4.2 Asymptotic  Stability of Linearized Equations 

A common technique  used to determine the  asymptotic stability of a linear set  of equations i s  the 

examination of the  real part of the  characteristic roots of those  equations. . A  set of equations is 

43 



asymptotically  stable if and  only if all of its characteristic  roots have negative  real  parts.  The  equa- 

tions  are  unstable if any  root has  a  real part which i s  positive or equal to  zero. 

Any set of linear  equations can be written in  the form 

X - A X .  
where 

When the  system matrix A is time invariant, one can  represent the homogeneous  portion of the set of 

first-order  equations in Laplace transform notation, 

sX( s) = .AX(s) . 

The initial  conditions have been  assumed  to be absent  because the steady-state  aspects of linear sys- 

tem performance are fully determined in their  absence.  This  expression can be written 

[ A  - S I ]  X(S) = 0 , 

where s is the Laplace operator and 1 is the identity  matrix. If the solution to this  equation is to be 

nontrivial, the familiar eigenvalue problem results: 

Evaluation of the  determinant results in  the system  characteristic polynomial, and the  resulting  values 

of s are the eigenvalues or the system  characteristic  values. 

For the specific problem  under study, it is possible to write the characteristic equation as the 

product of two polynomials, one of fifth order  and the other of sixth  order,  because  the  system  equa- 

tions can  be decoupled. It  would indeed be a  tedious  task if one  were to  attempt to determine the roots 

of the characteristic polynomials.  Fortunately,  however,  the Hurwitz criterion  (Reference 4) affords 

both the necessary and sufficient  conditions required to assure that all  characteristic  values have 

negative  real  parts without, in fact, having to solve for the  actual  characteristic roots. 

44 



Define the characteristic polynomial to be of the form 

8,s" t a,-lsn-l t . . . t als t a. = 0. 

Hurwitz states that two conditions must  be satisfied in order to ensure  that  all  zeros of the  character- 

istic polynomial have negative  real  parts. 

I) All  of the polynomial coefficients must be of the same sign, none being zero. 

11) Each member  of the sequence of Hurwitz determinants Dl ,  D2, ... Dn-l ,  defined  below, must 

be positive. 

D. = a ,  > 0 ,  

and 

1 1  

"1 

a3 
D2 = I  

a l  

D3 = a3 

a5 

" 0  I >  0, 
"2 I 

a. O 

a 2  a l  

"4 "3 

> 0. 

The following diagram may serve as  a memory aid in constructing the various Hurwitz determi- 

nants. 

D2  a3 "2 1 "1 a. 

D3 "5 a4 "3 a2 

0 

0 

a l  

a3 

The determinants  are formed a s  illustrated by forming determinants of successively  larger numbers 

of rows  and columns starting from the upper left corner of the  array shown. Any coefficient  absent 

from a  particular  characteristic equation is replaced by zero. 

Consideration of the  sixth-order  characteristic polynomial requires  the  evaluation of D l  through 

D,; and consideration of the fifth-order  polynomial, D l  through D,. 
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It is  possible  to  solve for the  coefficients of the two characteristic polynomials by algebraically 

manipulating  the  linearized  Equations (3.12) through (3.16) and (2.2). That is, 

and 

The sequence of Hurwitz determinants  that  are  of  interest  are 

and 

D, = a l a 2  - a  a 0 3 > 0 '  

D, = a3D2 - a l ( a l a 4  - 

D, = a,D3 - a2a5D2 t a 1 6  a  D 2 t aoa5(ala4  - a5ao) ,  

D,  = a5D,  - a6a,D3 t a  a  a  D - . 6 1 5 2  

It i s  often  convenient to define D ,  and D ,  in  terms of an intermediate  quantity E,. 

where 
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D ,  = a3D2 - a 1 E 2 ,  

D ,  = a4D3 - a a D + a  a  D + aoa5E2 ,  2 5 2  1 6 2  

E ,  = a l a 4  - a5ao 



4.3 Definition of Characteristic  Polynomials 

Before  continuing  with a detailed  development,  the  following  definitions  will  be  made  in  order to 

simplify  the  notation  that  follows. 

Recall ing  that  Q2 has  spherical  symmetry, 

1,(11) = 12(22) = 12(33), 

and  that  the  rotor is symmetr ic   about   i ts   spin  axis ,  

we  define 

I(22) = 1,(22) t 1,(22), 

and 

where i = 1, 2 ,  or 3, while k = 1 or 3, and 

I,, = I , ( l l ) ,  I,, = 1,(22). and I,, = 1,(33). 

Also,  
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and 

The coefficients of the roll, yaw, and gimbal related  characteristic polynomials  are listed below. 

48 



"6 "2:3['13'11 + '23(  I 11 c2/3 + Il3S2Q]. 

To make the stability problem manageable. certain approximations were  made at  this point of the de- 

velopment. Nominal values and an associated dynamic range of 100 to 1 were chosen for each of the 

system parameters. Those terms more than three  orders of magnitude  below any other terms included 

in  any  polynomial coefficient were dropped. In determining which terms should be dropped, the ful l  

dynamic  range  of each parameter was considered. In this manner, very little generality has been lost 

and  with  the exception of certain terms  in the a 5  and a g  coefficients,  the terms that were  found to be 

negligible were all of those terms containing the inertia I,, and/or the terms p A  through p E .  The I,, 

terms were  not  dropped from a:, or aG at  this point  in the  development. 

The  coefficients  resulting from t.his simplification are  listed below. 
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Proceeding in this same manner with the  development of the Hurwitz D,, D3, D,, and D,, i t  was 

found that  those  elements of the D's that  contain  the parameter I,, were at  least two orders of magni- 

tude  smaller than any of the  other  elements. It was  therefore  concluded  that it was  valid to set the 

remaining I,, terms as  well as  the entire  coefficient a6 equal to zero. 

Further discussion of th i s  characteristic equation is  left for Section (4.5). 

The  coefficients  associated with the  rotor,  error, and pitch  equation  related  characteristic polyno- 

mial are  listed below. 

bo = 0 ,  

b, = T,kgg t k,T, t [13(22) t 1(22)] D ,  

b4 = T,  [13(22) t 1(22)] D + I(22) , 

and 
b, = T,I(22). 
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The fact  that  the wheel rotor equation  represents a rate loop rather  than a position loop i s  exem- 

plified by the  fact  that bo = 0. Therefore, for stability,  it is necessary only to deal with the  fourth- 

order characteristic  equation 

where bi = bitl for i = 0, 1 ,   2 ,  3 .  

The  nature of these  coefficients, together with the physical requirement that  the inertias, D, TI, 

T, .  ( T 1  - T,) ,  and k ,  are  all individually positive  quantities,  cause  this  characteristic  equation to be 

one which is relatively straightforward to handle. In fact, the only condition posed by the requirement 

that  all the polynomial coefficients have the same sign,  is that 

I l l  "13 

Expansion of the Hurwitz determinants  yields 

and 

D ,  = I(22){(kggk,T,D t k,,k, t k$)(T1 - T 2 )  t kTT2D2[I(22) t 213(22q 

+ [k,,k,T,T,D t 13(22)kg,D](l t T,D) t k$T,T,D t [13(22) t I(22g k,D} 

t 13(22)(Dk,,T,[(T,k,, t kTTl) ( l  f T,D) t k,T, f 13(22)D] f ilk,T,[T,k, + D13(22q} . 

Clearly, both D, and D ,  are always  positive  because of the physical  constraints  stated  earlier, and no 

further conclusions can be drawn  from this  characteristic polynomial. 

In comparison with the example above, the complexity associated with the  application of the 

Hurwitz criterion to the roll, yaw, and gimbal relat,ed characteristic polynomial i s  by far a different 

matter. 

In general,  aside from those  unusual cases in  which the coefficients and associated Hurwit.z de- 

terminants  result in simple  expressions, application of these  criteria  is limited to numerical problems 

that seek to establish whether or not a particular set of parameters  gives  rise to a  stable  system con- 

figuration, or those in  which a single  system parameter i s  adjusted  until  stability i s  achieved.  There- 

fore, in order to determine algebraically the stability thresholds for the  generalized  gimbaled-reaction- 

51 



wheel-scanner class of spacecraft,  it was necessary  to develop a somewhat modified  Hurwitz criterion. 

The following section  deals with a detailed  discussion of this modification. 

4.4 Development  of  Modified  Hurwitz  Criterion 

Recall  that the application of the  classical Hurwitz criterion  to a fifth-order characteristic polyno- 

mial would require, for asymptotic stability, 

and 
a i > O f o r  i = O ,  . - . ,  5 ,  

D ,  > 0 for k =  2, . . . ,  4 .  

It  would indeed be a horrendous, if not impossible,  task  to demonstrate  that these nine algebraic quan- 

tities  are simultaneously  greater than zero. Clearly, however, at  a threshold of stability,  at  least one 

of these  quantities must pass through zero. 

With this point in mind, it is possible  to show that before either D ,  and/or D ,  can go to  zero, D ,  

must already have gone negative. This means that if any of the D’s are  to  establish the stability 

threshold, then that D must i n  fact  be D,. Furthermore, if  any coefficient  goes  to  zero, then at  least 

one of the determinants will already be negative except when either a. or a5 go to zero first. But  in 

this problem, a5 = IllI13Bg # 0, so that a s  far as the coefficients  are concerned, we must only concern 

ourselves with the possibility of a. = 0 first. 

In summary, the results of this modified technique show that at most three situations need  be con- 

sidered in  order to  define  the stability  thresholds for a general  algebraic fifth-order system. 

(I) Set a. = 0 .  

Set a. > 0. 

Demonstrate that on the a. = 0 line, 

a i > O f o r i = l ,  . . . ,  5 
and 

D ,  2 0 .  

Demonstrate that within the a. > 0 region, 

and 
a i > O f o r i = l .  . . . ,  5 

D ,  > 0 .  

52 



The complete set  of thresholds has been established if these conditions are  satisfied. If not,  it is 

necessary  to proceed to  Step (11). 

(11) Set D, = 0 .  Demonstrate that on the D, = 0 line, 

a i l O f o r i = O ,  _ . _ ,  5 .  

Set D, > 0. Demonstrate that within the D, > 0 region, 

a i > O f o r i = O .  . . . ,  5.  

Similarly, if  these  conditions  are  satisfied,  the complete set of thresholds have  been established. If it 

i s  not possible  to satist'y either condition (I) or (11), then i t  i s  necessary to proceed to  Step (111). 

(111) Demonstrate that  a  piecewise combination of (I) and (11) can be satist'ied. 

Proof: When the sequence of determinants is  the limiting factor in the determination of stability thresh- 

olds for a particular set of system  parameters,  it is convenient to  set  equal  to zero that D i  which f i r s t  

approaches  zero. Having done this,  it is possible  to  express the other determinants, taking  into 

account  the constraints imposed by the fact  that one of the Di 's  i s  identically equal  to  zero. 

Recall  that 

D ,  = a la2  - aoa3 ? 0 ,  

D ,  = a3(ala2 - a a ) - a ( a  a - a5ao) ? 0 ,  0 3  1 1 4  

and 
D, = a4D3 - a2a5D, t aOa5(ala4 . aoa5) > 0 

A) Let D ,  1 c ,  c > 0 but arbitrarily  close  to  zero. 

Select  system parameters such  that 

D ,  = a2a1 - aoa3 = t 

and 

D ,  = a4 [a3D2 - al(ala4 - a5ao)] - a2a5D, t aoa5(ala, - a 0 5  a ) 3 0. 
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and 

Substituting with E + 0, 

D ,  = -a1a4(a1a4 - a5ao) t aoa5(a1a4 - aoa5> 3 o 

D, = -(ala4 - a5ao)', 

which is  clearly  negative. 

B) Let D ,  = 6 ,  with f + 0. 

Select parameters such  that 

D, = a3D2 - al(ala4 - a5ao) 0 ,  

or 

but 

D ,  = - a2a5D, t aoa5(ala4 - aoa5) 3 0 ,  

that is 

D, = -a2a5D2 f a  a - D ,  5 0 :  "3 3 

0 5 a l  

and 

alD4 = - a 5 D E ,  

which i s  clearly a negative quantity. 

C) Let D, = D, x c,  with 6 + 0. 

For this  trivial  case, D, = 0 as well. 

Therefore, if a Hurwitz determinant is the  limiting factor in  the determination of stability  thresholds,  it 

i s  necessary  to consider only that for D, = 0, a i  2 0 for i = 0, . . . , 5; and within the region where 

D 4 > 0 , a i > O f o r i = 0 ,  . . . ,  5. 

Similarly if a stability threshold i s  crossed  because one of the ai 's  approaches zero first,  it is 

possible  to  set  that  ai  equal  to zero and to  evaluate  the  Di's accordingly. 
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A) Let a,, = 0,  ai > 0 for i = 1, . . . , 5. 

D, = a2al > 0 ,  

D, = al(a3a2 - ala4) > 0 ,  

and 
D, = a1 [a4(a3az - ala4> - a2(a2a5>] > 0 .  

Note that D, > 0 is implied by and is a weaker conditior. than D, > 0. 

B) Let a l  = 0,  ai > 0 for i = 0, 2,  3,  4, 5. 

D, = -aoa3 < 0 .  

c) Let a, = 0, ai > 0 for i x 0, 1. 3 ,  4. 5. 

D, = - aoa3 < 0 

D) Let a3 = 0, ai > 0 for i = 0, 1, 2,  4, 5. 

D, = a2a1> 0 ,  

D, = -al(ala4 -- a5a,), 

and 

DE alD4 = - - - DEa5 < 0 .  
a l  

E) Let a4 = 0, ai > 0 for i = 0, 1, 2. 3,  5. 

D, = a2al -- aoa3 > 0 ,  

D, = a3D2 t a1a5a0 > 0 ,  

and 
D, = -a2a5D, - azag < 0 for D, > 0 .  

55 



Therefore, if a  characteristic polynomial coefficient  goicg to zero is the limiting  factor in the  determi- 

nation of a  stability threshold, it is necessary to consider only the following. 

For a. = 0, 

ai 2 0 for i = 1, . . . , 5 and D, 1 0; 

and within the region where a. > 0, 

a i > O f o r i = l  , . . . ,  5and D , > O .  

No other useful cases are found  by letting  combinations of the ai's go to zero  simultaneously. 

4.5 Application  of  Modified  Hurwitz  Criterion 

Conveniently, it was possible to establish that  the gimbaled-reaction-wheel-scanner class of 

spacecraft  falls into Category (I). A s  a  result,  it  was  possible to express the stability  thresholds for 

a complex system in  relatively  simple terms. In fact,  this method of presentation made it  possible to 

give physical meaning to these thresholds as well as to indicate the type of instability  encountered 

once  a threshold  was crossed. 

The details of this example are  presented below. 

It i s  convenient to express the coefficients of the characteristic  equation under study as  
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A5 -= I , , I , ,  . 
Bg 

A normalized set of equations  results when the  followlng  substitutions  are made into  the  equation 

set shown above. 

H ,  = hf12,1,, 

and 

The  resulting  normalized  equations  are: 

a ,  = (-a f p - h)(4p - 4 - h)  , (4.2) 

a2 = ( k  - h)(a3) t h C p ( 2 ~  t 2p - 3 t h )  t h2  S2p(-p t h t 2 ) ,  2 2  (4.3) 

a4 = a(k - h)  t h2(a C2p t S2p) 
and 

a5 = a .  
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The  expanded Hurwitz determinants  can be detailed in  terms of the normalized coefficients.  The 

resulting  expressions  are 

E 2  2 (-a t p - h) C 2 p  [u(4p - 3 - h)] t (4p - 4 - h )  S 2 p ( p  - h)  , 
h 

(4.8) 

D3 2 = (-a t p - h) C 2 p  k12(9p2 - 8p - h )  t 9a( l  - p)‘(-p t 2 t h )  t 9(1 - p),(a3)] 
h 

(4.10) 

Recall  that E ,  was  defined in Section (4.2) as  

E ,  = ala4 - a5ao.  

With the coefficients and the Hurwitz determinants now completely  defined,  it i s  possible to ana- 

lytically  demonstrate that  the characteristic polynomial  under s tudy falls  into  category (I) of the modi- 

fied Hurwitz criterion  presented i n  the  previous  section. An analytic proof follows. 

The  expression a. = 0 is a single-valued  function of a .  

Solving for dp/da  on the a. = 0 line, we find 

d p  
( k  - h)(4p - 4 - h)  - h2C2p 

” - 

‘a  ( k  - h)[(-a t p - h)4 t (4p - 4 - h ) ]  - h2C2p  - 4h2S2p 

From Equation (4.1), when a. = 0, 

h2S2/3(4p - 4 - h)  
(-a t p - h )  = 

( k  - h)(4p - 4 - h )  - h 2 C 2 P  ’ 
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Substituting, we obtain 

do [(k - h)(4p - 4 - h) - h2C2p] 
-=  
da [(k - h)(4p - 4 - h) - h2C2p]' f 4h4S2PC2P ' 

From this  expression, 

dP 1 2 - 2  0 .  
da 

The  second form  of dp/da shows  that a. = 0 has two branches, one having a horizontal  asymptote 

FG* for  which dp/da = 0 ,  and one having a 45O asymptote J K  for  which dp/da = 1. For dp/da = 0,  

( k  - h)(4p - 4 - h )  - h2C2/3 1 0 .  

or 
h2C 2p 

(4p - 4 - h )  =- ( k  - h ) '  

and for dp/da = 1, 

Figure 4.1 i s  a representation of these  curves along with the a l  = 0 lines, M N  and QR.  

For Case I, consider the conditions ( k  -- h )  > 0 and p f Oo, 90". p / 1. 

In this  case, the  horizontal  asymptote of  a. i s  above the horizontal a l  0 line MN, and the 45" a. 

asymptote is to  the left of the 45O a1 0 line QR. 

The lower  branch of the a. = 0 curve TU passes through the intersection of the two a l  = 0 lines, 

and  both a. and a l  are simultaneously  zero at the point  of intersection: 

This a. = 0 branch lies  entirely above the two a l  = 0 line  segments QL and LN. 

In order to determine the positive regions of ao. consider  the expression 

*Lettered  references to line  segments  refer  to  those  shown  in  Figure 4.1 for Case  I .  and  to  those  shown  in  Figure 
4.2 for Case  11. 
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P 

I " T /  ' 
(- 4 + 4p - h) = h 

dp/da  = 0 ,  a. = 0 asymptote 

U 
N 

a 

" 

M 

a. = 0 

l a l  = 0, (- Q + p - h )  = 0 

p - h )  = h 2 S 2 p / ( k  - h )  

= 1, a. = 0 asymptote 

Figure  4.1-Representation of a. and a1 lines  shown  in  the plot of p versus a .  

This  expression  is   posit ive  everywhere  on  the  upper a. = 0 branch  (curve VW) and  negative  every- 

where  on  the  lower a. = 0 branch  (curve TU). These   fac ts   a re   suf f ic ien t   to   show  tha t  a. > 0 every- 

where  above  the  upper  and  below  the  lower  branches of the a. = 0 curves.  

(a)  Consider  the  upper  branch of a. 1 0 

a3 = 1 t (-a t p - h)(p - 2 - h)  t (4p - 4 - h)  

On the  horizontal a1 = 0 l ine,  

a 3 = l f ( - a t p - h ) ( p - 2 - h ) = a  I t -  3qir) t o? - , 

while 

At a = 0, 
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which is always  greater  than zero. At the  intersection of the  two a l  = 0 l ines  (point L).  

and a3 = 1, which is clearly  greater  than  zero.  

Since aa3/aa is constant  for  any  particular  value of h regardless of its polarity,   and  since a3 > 0 

at   both a = 0 and a = 1 - (3h/4), a3 > 0 at all points  on  the  line  segment  where 0 5 a 5 1 - (3h/4). 

Negative a has  no  physical  meaning. On the 45O a l  = 0 l ine  Q R ,  

Therefore,  on  and  above M N ,  the  horizontal a = 0 line  (4p - 4 - h )  = 0 ,  a3 2 1 and a 3  is clearly 

greater  than zero. 

This   s lope is positive  everywhere  for  positive a and  to  the  left  of the 45O a l  = 0 line.  Since a 3  is pos- 

i t ive or zero on the a1 = 0 boundaries MLR and  increases  as p increases ,   then a3 2 0 everywhere  in  the 

upper a1 2 0 region  bounded by MLR and a, > 0 everywhere  in  the  upper a. 0 region,  that  region 

bounded by the  curve VW. 

From  Equation  (4.10),  it   is clear that D, > 0 everywhere  in  the  upper a1 > 0 region  above MLR, 

since  both (-a t p - h )  > 0 and  (4p - 4 - h )  > 0 in this  region. 

It  follows,  therefore,  that  excluding  the cases for  which h = 0 and p = 1, D, is greater  than  zero 

everywhere  in  the  upper a. 2 0 region  on  and  above  curve VW. 

Because  a must  be a positive  number, I = d,, both a4 and a5 are greater  than  zero  everywhere 

in  the  region of interest .  

All   that   remains to be shown for Case  I (a)  is tha t  a2 > 0 in  the  upper a. 2 0 region.  For  this  con- 

dition,  an  indirect  demonstration is easier   than a direct  one. 

E 2  p= (-a t p - 4 -  

Each  of the  terms  that  make  up E 2 / h 2  are  either  equal  to or greater  than  zero  on or above  the  horizontal, 

and  on or to the  left of the 45O a = 0 l ines .   That  is, on  and  above MN, (4p - 4 - h )  3 0; on  and to the 
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left of QR, (-a t p - h) L 0; and on and to  the  left of QR, ( p  - h) 2 a. Therefore, E,  2 0 on and above 

MLR, and E ,  > 0 above the upper a. = 0 boundary defined by curve VW. Recalling  that  the determinant 

E,D3 - a5Dz 
D, = 

a l  

and rewriting it,  we see that 

Finally, regrouping terms gives 

alD4 = a3D2E2 - (al@ t a 5 D E ) ,  

However, because 

D, = azal - aoa3,  

and because  it has already  been  demonstrated  that D,, E , ,  a0, al. a3, and a5 are all greater  than  zero 

in this region, it follows that a, must also be positive. 

(b) Next, consider  the lower branch of a. = 0. 

Because  this branch passes through the intersection of the two a1 = 0 lines and remains above the 

line segments QL and LN, the region  bet.ween these  line  segments and the a. : 0 lower branch,  defined 

by the curve TU, is excluded from the region of stability  because a l  < 0 in  this region. The region  be- 

low the a l = 0 lines bounded by QLN will be excluded by demonstrating  that  either' D ,  or a3 are nega- 

tive in this region. 

D4 = U ( - Q  t p - h)3C4/3 t (-a t p - h)S2pC2/3(a3)  t (4p - 4 - h)S4& 
h4[9(p - 1)21 

and  in this lower region both (-a + p - h )  and (4p - 4 - h )  are always  negative.  Because only  odd 

powers of these terms appear, all of the  components of D, must be negative  unless a3 itself is nega- 

tive. In either  case,  either D, < 0 and/or a3  < 0, and the entire region  below the lower  branch of 

a. = 0 is excluded from the region of stabilit,y. 

In summary, for the case of ( k  - h)  > 0, the only  region that was found to be stable was that region 

bounded at the bottom by the upper a. = 0 branch. 
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For Case 11, consider  the  conditions ( k  - h )  5 0 and p f Oo, 90°; p f 1. 

When k = h,  the a. = 0 curves  degenerate  into a single  line  because a. is no longer quadratic in p .  

The upper section of this  line curves up  and goes  to  infinity while the lower section becomes a straight 

line heading toward  minus infinity  parallel to the a axis.  This  line  passes through the intersection of 

the two a1 = 0 lines as shown  in Figure 4.2 and has the slope defined by 

From this  expression,  it i s  clear  that for 1 2 d p / d a  2 0, a. is   less than  zero  above and to  the  left of the 

B o  0 curve, and is  greater than zero below  and to  the right of it. But neither a l  nor D, nor a 3  con- 

tains the factor ( k  - h ) ,  so  that  this lower  region  bounded by the a. = 0 curve is excluded for the  same 

reason  that  it  was when ( k  - h )  was greater than zero. One can  recall  that  at  least one of these quan- 

tities was shown to be negative at  all  points below the  Case I lower  branch of the a. = 0 line. (In 

Case  I,  it was the lower branch a. = 0 curve that.passed through the  intersection of the a 1  = 0 lines.) 

For ( k  - h)  < 0, the  horizontal a. = 0 asymptote lies below M N  (Figure 4.2), and the 4 5 O  a. = 0 

asymptote lies to  the right of QR. as i s  shown in the fi, v r e .  

P I  R a - 0  / 1 -  

a l  = 0 .. 

d p / d a  = 0 ,  a. = 0 asymptote 
U G  

a 

Figure  4.2-Representation of a .  and a l  lines  for ( k  - / I )  50 .  T h e  a. = 0 curves 

degenerate  into  the  single  upper  branch VLW when k = h .  
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For this case, it is the upper Bo = 0 branch (curve VW) that  passes through the  intersection of the 

two a l  = 0 lines. Further, this branch remains entirely below the a1 = 0 boundary MLR. On the a. = 0 

curves, 

. .  

aao 4h2C2/3 h 2 S 2 p  
dp 4 p - 4 - h  - a t p - h '  
" ~- - t 

However, since  this  is  always  negative on the upper a. = 0 branch and positive on the lower a. = 0 

branch TU, the only region for  which a. is  greater than zero is  that between the two a. = 0 branches. 

Clearly,  this region i s  excluded because  at  least one of a l ,  D,, or a3 have  been shown to be negative 

in  this region. It may therefore be concluded that no stable region exists when ( k  - h )  5 0. 

In summary, with the  exception of those  cases for which /3 = Oo, /3 = 909 or p = 1, the stability 

threshold for this complex system is completely  defined by the upper a n  = 0 curve vw ( k  i h ) .  Specifi- 

cally, on  and above this a. = 0 curve, it has been shown that a i  > 0 ( i  = 1, ..., 5) and D, > 0. The mode 

of instability encountered at the threshold stated above is  a loss of nul l  reference. When a. = 0, 

one root of the characteristic equation i s  equal  to zero. If the remaining fourth-order characteristic 

polynomial were examined for its  stability  properties, one finds  that  it is  stable both on the thresholds 

and  within the regions under discussion. 

Consider the  special  case of p = Oo. In this  case, the curved a. 0 boundaries degenerate  into 

its asymptotes. The horizontal line, ( k  - h)(4p - 4 - h )  - h2  x 0, is always above the a l  = 0 line, 

(4p - 4 - h)  = 0, for ( k  - h )  > 0. On this boundary, a. alone is equal  to zero with all other quantities 

of interest  positive as before. However, the 45O asymptote, (-a + p - h )  = 0, now coincides with 

the 45O a = 0 line and along this  line, a and a. become zero simultaneously. A s  a result, all of the 

Di's and E ,  are simultaneously  zero and the characteristic equation has two roots of s = 0 along this 

line.  The  stability properties of the remaining third-order characteristic polynomial  were studied, and 

it was found that t h e  D, Hurwitz determinant associated with the third-order equation is zero. This 

condition implies  that the system will have an  undamped oscillation in addition to two roots equal to 

zero on this particular stability threshold. 

Next, consider the  special  case of p = 909 Once again, a0 = 0 degenerates  into  its two asymp- 

totes. In this  case,  the 45Oline, ( k  - h)(-a t p - h )  - h2 = 0, is  to  the left of the a l  = 0 line, (-a t 

p - h) = 0, for ( k  - h )  > 0. It is the  horizontal line  that now coincides with the a l  = 0 line, (4p - 4 - 

h)  = 0, and on this  line, a1 and aO are simultaneously  zero. Accordingly, the characteristic equation 
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exhibits two s = 0 roots  along  this  line.  The D, Hurwitz determinant associated with the remaining 

cubic  equation was examined  in this  case, and it  was found to be  greater  than  zero.  This  fact  implies 

that  the remainder of the  system  roots,  along  the  segment in question, have negative  real  parts, 

Finally,  consider the singular  line p = 1. Independent of all of the  coefficients of the character- 

istic polynomial and all of the  other  determinants, D, = 0 for p = 1. This  fact  implies  that if  any  por- 

tion of the p = 1 line lies within a region that  has  otherwise been found to be stable, the  system would 

exhibit  a  sustained  oscillation if  p were set  equal  to one. 

For h > 0, the a l  = 0 line  lies above  the p = 1 line, so that only negative  values of h are of inter- 

est when considering th i s  special  case.  There  will be a segment of the p = 1 line above  the upper 

branch of the a. = 0 curve when 

and 

a4 = a(k  - h )  i- h2(aC2p t S2/3), 

as = a .  

It can  easily be seen  that a2 a4 t a. and a3 = a l  t as. Substituting for a3 and a2. the characteristic 

polynomial can be written its 

a. t a l s  t (a4 t ao>s2 t ( a l  t a5>s3 t a4s4 t a5s5 = 0. 
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But this  can  be factored and rewritten as 

(s2 t l>(a, t a ls  t a4s2 t a5s3> = 0. 

This presentation of the fifth-order characteristic equation clearly  illustrates  the term giving rise to 

the  sustained  oscillation mentioned earlier. Since orbit frequency Q, was normalized  out of the coef- 

ficients,  it i s  clear  that the sustained  oscillation will occur at orbit  rate. 

Examination of the derived thresholds makes possible a very  simple physical explanation of the 

stability threshold  asymptotes (4p - 4 - h )  = 0 and (-a + p - h )  = 0.  These  terms, as will be demon- 

strated, simply represent  the  restoring torques for the  roll axis, yaw axis, and gimbal equations. 

Roll: 

Gyroscopic torque 

Gravity-gradient torque 

Momentum bias 

Total restoring torque 

Yaw 

Gyroscopic torque 

Gravity-gradient torque 

Momentum bias 

a I , - 1 3 a p - l  

a 3(12-  13)a 3(p - 1) 

a -h 

a 4 p - 4 - h  

a 1 2 - 1 1 u p - a  

none 

0: - h  

Total restoring torque 0: p - a - h  

Gimbal: 

Total restoring torque a k - h  

Stability  requires  that the three  restoring  torques be simultaneously positive. 

4.6 Extension of Modified  Hurwitz  Technique 

It. was found to be an interesting academic exercise  to extend the modification of the Hurwitz cri- 

terion and to consider characteristic polynomials of various orders. 
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(I) Consider  the  fifth-order  equation 

For this  polynomial,   the  necessary  and  sufficient  conditions for all roots to have  negative  real   parts 

are 

a i > O f o r i = O  ;... 5 ,  

D 2  = ala2 - aoa3 > 0 ,  

and 

D ,  = a3(ala2 - aoa3) - al(ala4 - a5ao) > 0 ,  

D - a D - a2a5D2 t a0a5(ala4 - a0a5) ‘> 0 .  4 -  4 3 

But D ,  + 0 first   requires  that  

D ,  = -(ala4 - a5ao>2 < o 

and D, 0 first   requires  that  

a l D 4  = -a5DE i 0 .  

Therefore, for ai > 0 for i = 0, . . . , 5, D ,  must  approach  zero  first. 

D ,  = a4D3 - a2a,D2 t aoa5(ala4 - ao”5) 1 0 .  

and from the  expression  for D,, we  obtain 

Substituting in the  expression for D,, we  obtain 

alD4 = - a 1 032 t -D2D, ”3 - a 5 D i  2 0 
1 a l  
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Solving €or the  zeros of D, with a > 0, we obtain 

D 
D 3 -  -“(a3 2 T &x). 

The  quantity a ,D, can  be plotted against D,, and a  typical  curve is shown in Figure 4.3 a s  curve 

B. Also shown  in this figure are  the two limiting curves, marked A and C. Curve A represents  the 

parabola for which 

or 

while curve C represents the  parabola for  which 

Curve C  represents  the uppermost permissible  curve,  because, if the  system is to be stable, 

neither a5 nor a1 may be negative. 

Figure  4.3-Stability  constraints for fifth-order  polynomial. 



As a result,  the  shaded  region  under  the  parabola  and  above  the D, axis represents   the  s table  

region  and  the  parabola itself represents  transit ional  stabil i ty.  For stabil i ty,  D, must take a value 

defined  by 

The  fact that D, must  be real for  any  physical   system  adds  the  constraint   that  

a5  

a l  a3 
- ?  4". 

Next., consider  the  special  case for which 

a3 "5 

"1 a 3  
- = 4- 

For this  case, i t   i s   poss ib l e  to find  only a transitionally  stable  point,  this  point  being  defined by 

D "D,. 
3 -  2 

Finally.   consider  the  special   transit ional case for which 

D ,  = D, = D, = 0 

Let  D, = 0 and D, + 0. D, is then  given by 

But 

or 

and  therefore 

D ,  = -al(ala4 - a5a0). 

D, = a4[-al(ala4 - a 5 0  a ) I  t aOa5(ala4 - aoa5) 0 

D, = -(ala4 - a 5 0  a )2  = 0 

D, = 0 
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Next let D ,  = 0 and D 3  4 0. D ,  is then  obtained from 

D 3  = a3D2 - al(ala4 - a5a0) = 0 ,  

a3D2 (ala4 - a a ) = -. 
5 0 a l  

But 

a3  D, = -a2a5D2 t aOa5 a D 2  = 0 ,  
1 

or 

and,  therefore, 

Since 

and 

alD4 = -a5Di = 0, 

D, = 0 .  

D, = a2a1 - aoa3 = 0 

D, = -al(ala4 - a5ao) = 0 ,  

and if there is to be a transitional  case for D, = D, = D2 = 0, the following ratios must  hold: 

a1 - "5 - a3  

a ,  "2 

(11) When this modification was applied to a fourth-order equation, a similar set of results were 

obtained. Consider the polynomial 

a. t a l s  t . . . t a4s4 = 0 .  

The  necessary and sufficient  conditions for all roots  to have negative real  parts  are 

a i > O f o r i = O ,  . . . ,  4 ,  
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and 

But D, + 0 first   requires  that  

D, = a la2  - aoa3 > 0 ,  

D, = a3(a1a2 - aoa3) - .;a4 > 0 

D, = -“:a4 < 0 ,  

and  therefore,  for ai > 0 for i = 0, . . . , 4, D, must  approach  zero  first. 

D, = a3(ala2  - aoa3> - a:a4 2 0 ,  

or 

D - - a  - a -  - a  2 0 ,  
3 -  r:( o::) .] 

that  is, 

D 3 - - a  - o(:;J - t a,(:;) -- - a 4 1 0 .  

Solving for the  zeros of D,, we  obtain 

A plot of D, versus  a3/al is shown  in  Figure  4.4(a),  and a plot of D, versus  a3/a is shown  in  Figure 

4.4(b). For s tabi l i ty ,  a3/al must  take a value  defined by 

In  addition,  since a 3 / a  must  be  real for any   phys ica l   sys tem,   there   ex is t s   an   addi t iona l   cons t ra in t  

that  a i  ? 4aoa4. 

Consider  the  special  case shown  in  Figure  4.4(a) for which a i  = 4aoa4. For th is  case, only a 

transit ionally  stable  point  can  be  found.  This  point is defined by 

a3 - “2 

a l  2ao’ 
” - 
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Figure  4.4-Stabil i ty  constraints for fourth-order  polynomial,  (a) D, versus a g / a  1 
and (b) D, versus a 3 / a l .  

(111) Fin;  I ly,   consider  the  sixth-order  characterist ic  equation 

a. t a l s  t . . . t a6s6 = 0 .  

D, = ala2 - aoa3 > 0 ,  

D, = a3D2 - al(ala4 - a5ao) > 0 ,  

D - a D - a a D t ala6D2 t aoa5(a1a4 - a5ao) ? 0 ,  4 -  4 3  2 5 2  

and 
D - a D - a6a,D, t a6ala5D2 - a6a > 0 .  5 -  5 4 

2 3  

and 
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But D, + 0 first requires  that 

D, = -al(ala4 - a5ao), 

D, = -a4al(ala4 - a a ) t a a ( a  a 5 0 0 5 1 4 - a5a0)' 

D, = -(ala4 - a5aOl2 < 0 .  



D, + 0 first   requires  that  

D, = a3D2 - al(ala4 - a5a0) = 0, 

then 

and 

(ala4 - a a ) =- 5 0 a l  

D2a3 D, = ---a2a5D2 -I ala6D2 t a a - 
0 5  a l  ' 

Manipulating.  we  obtain 

a1D4 = D2(afa6 - a5D2).  

But 

D, = asD4 t a1a6(a5D2 - a6a:), 

so by substi tution.  we  obtain 

D ,  = a5D4 t .5;-) a l D 4  I 

or 

and 

D: D2D5 = -a -. 
D2 

and  therefore 

D: 

5 -  '022 
D - - a  - < 0  

D, 0 first   requires  that  

D, = a4D3 - a2a5D2 t ala6D2 t aOa5(ala4 - a5ao) = 0 

But 
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so by substitution, we obtain 

a l D 4  = D3(a1a4 - a5ao) t D2(-a2a5a1 t a:a6 t aoa5a3)  = 0 

But 

and therefore 

and 

Substituting, we obtain 

D, = -a6a3D3 t a6a1(a5D2 - a 6 a F ) .  

or 

D,D, = -a6a3D3D2 t a l a 6 D 3  rD3 :I"""). 

Finally as 

then 

for D, > 0. It follows that, for a i  > 0 for i = O,..., 6 and  for D ,  > 0, D ,  must approach zero first. 

D, = a5D4 - a6a3D3 t a6a1a5D2 - L 0, 

after  substitution for D,, 

D ,  = a 5 [ a 4 D 3  - a2a5D2 t a l a 6 D 2  t aoa5(a1a4  - a 5 a o ) ]  - a6a  D t a  a  a D - 2 0; 3 3  6 1 5 2  

after rearranging terms, 

D ,  = -a5D2 2 2  t a5D3 ( a 3 D 2  - D3' t 2a:a6a5D2 - a6a3a lD3  - aga:;  
a l  / 
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and,  after  multiplication, 

alD5 = -agalDg t (asa3D3 t 2a:a6a5)D2 t [ ( -aya6a3 - a5D3)D3 - a 3 : ] .  

or 

alD5 = -a5Di t (-a!a6a3 t a5a3D2)D3 t (-agalDg t 2a:a6a5D, - a:.:). 

Once again, one can  solve for the zeros of the  quadratic  equation a l D 5  in terms of the  coeffi- 

cients of either D ,  or D,. A s  was  true in the cases of the  fourth and fifth-order characteristic polyno- 

mials, one can write the  stability  conditions in terms of these  roots. For simplicity, we  may write 

alD5 z aD: t bD, t c 

or 

a D ,  = a'Di  t b'D, t c' . 1 . l  

Then for stability,  either 

or 

must hold. 

The  constraint imposed by the  fact  that D ,  or D ,  must be real is b2 > 4ac or b' ,  > 4a'C'. 

For the special  case where b2 = 4ac ,  as  before,  stability  requires  that 

In summary, it  appears  that  there  exists  at  least  a  similarity in the method of modification of the 

Hurwitz criterion for the fourth-,  fifth-, and sixth-order  characteristic polynomials.  The manner in which 

these  modifications  can be  put to  practical  advantage i s  not at  all  obvious and is beyond the  scope of 

this  dissertation. It was felt, however, that  the  modifications  themselves were of sufficient  interest 

to  present them at  this  point. 
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CHAPTER 5 

THE  STABILITY OF THE  LINEARIZED  EQUATION SET 

WITH TIME-VARYING  COEFFICIENTS 

5. I General Discussion 

This   chapter   d i scusses   in   de ta i l   ce r ta in   aspec ts  of the   ana lys i s  of coupled  l inear  equations  with 

periodically  varying  coefficients. 

T h e   s e t  of l inear ized  equat ions  discussed  up to this  point  included as part of their  coefficient 

terms  the  term H , ,  which  had  been  defined  earlier as the  pitch-momentum  bias  and,  until  now,  had  been 

cons tan t .   This  bias results  from  the  pitch  reaction  wheel momentum,  and  in  practice,  the  instantaneous 

momentum of this  actively  controlled  wheel  varies  sinusoidally,  or a t  least periodically,  about  some 

average H in  response  to  certain  orbital   disturbance  torques  that   act   upon  the  spacecraft .  

Because  the  act ive  pi tch  loop  responds  to   this   per iodic   torque  dis turbance,   the   s tabi l i ty  of a 

gimbaled-reaction-wheel-scanner class of spacecraf t   in   the  presence of a large  periodically  varying 

pitch momentum bias   becomes   an   i s sue  of considerable  importance.  

A theorem  commonly  used  in  the  analysis of variational  equations  with  time  periodic  coefficients 

is credited  to  Floquet  (Reference 5). 

5.2 Development of Floquet Theory 

Let X = A ( f )  X be  a  system  of  first-order  linear  differential  equations 

where 

x = (x1,. . . ,x& - m < r  < 00 

and A ( f )  denotes  an 17 X 17 matrix  whose  elements  are  continuous  periodic  functions  of  period T such that 

A( f + 7) = A ( [ ) .  
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Floquet  asserts  that  a  typical  component of the  solution  vector  for  this  system  of  first-order  linear  differen- 

tial  equations  takes  the  form 

where 

Pk,(t) = C k i q ( t ) ,  Cki constant. 

The  constant rj is real or complex,  and q(t) is a  periodic  function  having  a  period of 7 seconds.  The  component 

xk is the  solution  corresponding to   the  kth system  state. A development  that  leads  to  this  conclusion  follows. 

Theorem 1 

A system  of  equations of the  form 

where 

x = A ( t ) X ,  x = (x1, ... , X J ,  - 03 < r <  0 0 ,  

A(r + 7 )  = A ( t )  

has at least one  solution not identically  zero  (Reference 6) of  the  form 

X ( t  + .) = h X ( t )  

for all  values of r ,  where X #(I is a constant,  not necessarily  real. The  term  “at  least”  has  been used i n  Theorem 1 

because  even if X were  repeated tz times,  there  would still be at least one  solution of the form stated.  Further, 

define  a  state  transition  matrix @([, to) as an n X 11 matrix  with  the  properties  that 

where l i s  the identity  matrix,  and 
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Having required  that  the  state  transition  matrix  satisfy the above  relationships,  it is possible to  demonstrate 

that 

where X ( t )  is the  state  vector  at  time t, and X([,) is the initial state  vector  at  time to 

Thus,  from 

we obtain 

x = A ( f ) X ,  

is indeed a solution  of 

X = A ( t ) X .  

Substituting  the  time r + T for f and  setting f o  equal to r ,  

x(t + 7 )  = @ ( f  + 7, f ) X ( t ) .  

From this  expression, given the  state  of  the  system  at  time r ,  the  system  state  can  be  found  at  time t + T, where T 

is the  periodicity of the periodically  varying  coefficients. 

If this  expression  for X ( r  + T )  is equated to the  one given i n  Theorem 1 ,  

or 

@ ( r  + T ,  r ) X ( r )  = hX(r),  

[ @ ( r  + T ,  r )  - M ] X ( t )  = 0.  
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Clearly, if X ( t )  is to be  nontrivial,  then 

I@(t + 7 ,  t) - h/l = 0,  

for  all  values o f t ,   o r ,  specifically 

I@(T,O) - A I / =  0 .  

It is  possible to analytically  demonstrate  that  the A's are  invariant  as  a  function o f t  (References 6, 7, and 8). 

If all Ai (i = 1 ,  2, . . ., n )  are  distinct,  there will be n independent  solutions to the  differential  equation 

X = A(t)X,  thus  verifying  Theorem 1 for  distinct Ai. That is, 

X(t + T) = hX(t),  for X = Xi (i = I ,  2, . . ., n ) .  

If only m values  of hi are   dis t inct  (1 5 m 5 n), t hen   a t   l ea s t  rn independent  solutions of X = A(t)X 

exist. Once  again,  Theorem 1 is proved. 

Let 

where rj is constant,  but  not  necessarily  real.  The  quantity ri is defined  as  the  characteristic  exponent  of  the 

system  of  first-order  differential  equations.  The X i  are  defined as the  characteristic  factors  or  multipliers  of 

X = A(t)X. 

Because of  the  ambiguity  associated  with  the  logaritllm  of  a  complex  number, hi, only  the real part of ri is 

uniquely  determined. 

Next  define  the  column  vector 
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where  there is one  column  vector for each A. for j = I ,  2 ,  . . ., t z ,  and rn corresponds  to  the  number of distinct 

x .'S. 
I 

I 

The  general   solution  which  satisfies  the  f irst-order  differential   equation  set   under  discussion 

asserted  by  Floquet  can  be  written: 

X(/) = 

n 

xi ( t )  

i= 1 

If the tirnc ( t  f r )  is substituted  for f into X.([), where r is the  periodicity of the  pcriodically  varying  coefficients, 
I 

X.(/ + r )  = P.( t  t r)e I 
, . . ( I  + 7 )  

I I 

Since e I Xi, the  column  vector  can  be  rcwritten as I' .r 
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From Theorem 1,  

Accordingly, if X ( t ) ,  as asserted  by  Floquet  (Reference S), is to  be  the  general   solution  vector for 

t h e   s e t  of first-order  differential  equations, 

X = A ( t ) X ,  

and  also is to satisfy  the  relationship 

X ( t  + 7) = hX(r) ,  

then P.(t) and Pi(' + T), as  they  appear in the  two  vector  expressions for Xi(' + T), must  be  equal for al l  values of 

t .  That is, P.( t )  must  be  periodic  with  period 7. 
I 

I 

To demonstrate  that Pi(') is periodic,  write 

= e  I Xi('). -r .t 

Substituting t + 7 for  the  time t ,  
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From  Theorem 1 ,  

Xi(' + 7 )  = xixi([), 

and  therefore 

B u t  
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At  this  point,  it  should  be  noted  that if the  characteristic  exponents  are  not  distinct,  then n- m of  the  independent 

solutions will include  functions  that,  instead  of  being  simply  exponential  in  nature,  are  products of exponentials 

and  polynomials in time.  Indeed,  the  exponents will still be  the  characteristic  exponents,  and  these will determine 

the  asymptotic  behavior  of  the  solution.  System  stability will be  governed by the  exponential  portion  of  the 

solution  and  more  specifically by the sign associated  with  the real parts  of  the rj's. 

Theorem 2 

From  the  form  of  the  determined  solution,  the  following  conclusions  can  be  drawn: 

(1 )  All solutions X ( r )  of X = A ( t ) X  approach  zero  as t approaches  infinity if and  only if (Xji  < 1 (i = 1,  

. . ., 1 7 7 )  or Re(r;) < 0. 

(2) All solutions  are  bounded  as f approaches  infinity if and  only if [Xi] < I (i = 1 ,  . . ., rn) or 

Re(ri) < 0. I n  addition,  for  those hi whose $ 1  = 1, it is required  that  the  multiplicity  of  this  characteristic 

value  equal  the  degeneracy  of  the  matrix [@(T, 0) - X,/]. 

(3) The  solution is periodic  of  period T if and  only if there is at least one X; such that hi = + 1 ,  all other 

IX;I < 1.  

(4) The  solution is unstable if any lAil > 1 or I Re ( ri) > 0 (i = 1, . . . , m). 

5.3 Deriving  Physical  Meaning From Floquet Theory 

The  general   solut ion  has   added  physical   s ignif icance  when  an  e lement  of a typical   s ta te   solut ion 

is detailed  in  the  following  manner. 

Recal l   that  hi x hi not  necessarily  real .   Therefore,  

where 8 is the  phase  angle  associated  with a complex hi: 

Recall  further  that  P,(t) is periodic of period T and  can  therefore   be  expressed as a Fourier   ser ies  

of the form 
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Forming the ith element of the  Ith  system  state  solution, one can  write 

L n=l 

Because  the  infinite series representation of Pi( t )  allows for the presence of any or all of the  fre- 

quency components  that are multiples of 2n/7, where T i s  the period of the time varying coefficient,  it 

i s  only necessary to  consider k = 0. 

Consider the special  case for  which hi = - a i ,  where a i  is greater than zero and real. One possible 

form  of the  solution associated with the hi described i s  

r i T  = In h i ,  

and 

where 

k = O ,  

bi = real 

bi > 0 for ai > 1 , 

and 

Substituting, we obtain 

bi = 0 for ai = 1 , 

bi < 0 for ai < 1 . 

or 

X I i ( t )  = cos - < !$ t 2 A ,  cos 2i7 nt t En sin - 2i7 nt ( %  e 
n = l  T j  
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From this example, it  is clear that although the magnitude of ai determines  the  stability  associ- 

ated with the  ith element of the  Ith  state solution X I i ( t > ,  it  does not affect  the frequency content of 

the  solution. Furthermore, if  the dominant hi has the form hi = -ai, where ai is real and positive, then 

the dominant frequency observed i n  the  solution is likely  to be half that  associated with the frequency 

of the periodically varying coefficients rather than 2n/7 itself.  Specifically, the  solution associated 

with the X i  = -1 case will be a periodic  function that i s  expandable into a Fourier series whose basic 

frequency is half that of the driven Coefficients. Only the odd harmonics wil l  be present. 

Another X i  for  which the  solution is clearly periodic i s  hi = t1. In this  case,  the periodicity of 

the element of the state  solution is the same as that of the driven coefficients. 

~ ] . ~ ( t )  = Cl iP i ( t ) e ' i t ,  

where ri = 0 t j0 for X i  = tl, and Pi(t> i s  of period T. 

Finally, consider the most general case,  that of 

hi = a + jp ,  with a and p real . 

Clearly, if the solution is to  be  even  possibly periodic, the real part of r i  must be zero. 

That is, 

Also, both the basic frequency associated with the imaginary part of r i  and the frequency associated 

with the driven coefficients must  be rational numbers. Even if these two unlikely requirements are 

satisfied,  it is possible  that P i @ )  must be represented by an infinite series whose basic frequency is 

that of the driven coefficients. 

Because of the multiplicative relationship between Pi(t) and e1 Irn ('i)', the associated sum and 

difference frequencies mus t  be commensurate with one another if the state solution i s  to be periodic. 

When Pi( t )  must  be expressed a s  an infinite  series,  it might  be necessary  to  choose  a very  low basic 

frequency,  one having a very long period, in  order that all s u m  and difference  frequencies associated 

with the  infinite  series will be commensurate. r. 

A s  a result,  it is evident  that at  least from a practical engineering point of view, the most common 

cases whose solutions might be referred to a s  being periodic in nature are only those  that have at 

least one hi = t l .  
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In summary, since  the hi are the  eigenvalues of the state  transition matrix $(C + 7, t )  or Of $(7, oi,  
the  analytic  stability problem becomes  one of developing this matrix  for the  state  equations  that in- 

clude time-varying coefficients. I 
I 

I I In pursuing this problem, it  was hoped that  the state  transition matrix $ ( T ,  0) could have been 
I 
I determined with  some generality  (that i s  without having to resort to numerical techniques). However, 

i after  a  considerable amount of work, the attempt proved to be fruitless. 

In retrospect, one might have  expected that  since  the $ ( T ,  0) matrix in reality i s  the solution for 

all time once  given  the initial  state of the  system, finding this matrix in  general would  mean that  it 

would  be possible  to find the  solution in general for a coupled system with time-varying coefficients. 

With this in  mind, the problem was pursued numerically in  order that the  Floquet  technique might 
1 

be applied to a complex set of equations  that  describe a pxticular example of a gimbaled-reaction- 

wheel-scanner class of spacecraft. 

5.4 Application of Floquet Theory to 

Momentum-Bias-Caused Time  Variations 

A technique both convenient  to apply and numerically accurate in spite of the approximations made 

was one in which the sinusoidally varying H, and the cosinusoidally varying H, terms were replaced 

by square  waves respectively 90° out  of phase. In this manner, the  variational equations with periodic 

coefficients were converted to a set of variational  equations having piecewise  constant  coefficients. 

This made i t  possible  to define  the state  transition matrix  over one period a s  the product of four piece- 

wise constant  matrices. 

where 

217 
T =- = the  periodicity of the driven coefficients. 

w 

Each term in the product can be written: 



A being a constant matrix. 

A digital computer simulation  verified  that the square-wave approximation introduced no apprecia- 

ble error as long as use was made of the  fact  that  the magnitude of the  equivalent square-wave funda- 

mental  component is 4/n times  the  amplitude of the  sine and cosine  waves being approximated. 

The linearized  equations governing this system might be presented a s  follows: 

e = f(;, e) 
= e, 6) 

i; = f ( e ,  e,  e, i ,  a)  

Recall  that when the general  set of equations  was  linearized in Chapter 3, the rotor angular  veloc- 

ity was written QR = H ,  + a ,  where a ,  from that point on, was defined to be a  variational rotor speed, 

and H ,  was defined to be constant. 

If the system were subjected  to a sinusoidal pitch disturbance torque such a s  one that might result 

from a residual  spacecraft magnetic moment, it would  be possible to evaluate 6 and U from the pitch, 

rotor. and  error signal  set of equations.  The  resulting  instantaneous wheel speed would be a phase- 

shifted sinusoid and the  quantity 1,(22)& would represent a  variational value  of momentum about the 

heretofore constant momentum bias H , .  As a result, the bias and its derivative as they appear in  the 

roll, yaw, and gimbal equation set  can  be redefined to  reflect  the variation resulting from a  sinusoidal 

pitch disturbance torque. If the  disturbance were periodic but  not sinusoidal, the  variation in momen- 

tum could be expressed as a Fourier series, and using superposition,  the  solution would proceed ex- 

actly as above. 
If the performance of this  class of spacecraft i s  to be acceptable in the presence of pitch axis 

disturbance torques, the active pitch  loop must  be tightly  controlled. Thus,  the  disturbance  torques 

mus t  be countered by variations of the reaction wheel speed about its  bias rather than by variations of 

the spacecraft about the pitch axis.  This being the case,  it  is  reasonable to consider  the variations of 

all  state  variables small with the exception of a .  The term H ,  can be redefined to account for this var- 

iation, and the analysis can be continued using the altered set  of variational  equations. 

88 



Order-of-magnitude  experience  gained  in  Chapter 4 allows  the  roll,   yaw,  and  gimbal  equation set 

to be  rewritten  in  the  following  form: 

I 
I T Z x :  -HbSP& - CPHb$ t Bg;i’ - CPn,H,+ t HbSPQo$ t (kg - Hbno)r  1 0 .  

where 

1,(11) = a l ,  

and 
1,(33) = I .  

Furthermore, for the  purpose of this   discussion,  it is convenient  to  define ff, as 

H, 1 H, t dHS-t 277 

and 

H, = I d H C I  t , H, and  dH constant 277 277 

T is theperiodicity of the  disturbance  torque. 

The  phasing of a with  respect  to  the  disturbance  that  produced  it is unimportant,  since  the  equa- 

tion set under  investigation is homogeneous. Any roll  and/or  yaw  disturbances  will  be  treated  sepa- 

rately  in  Chapter 6, which  deals  specifically  with  the  response  to  disturbance  torques.   The  purpose of 

the  present  chapter is only  to  investigate  potential  stability  problems  arising  from  the lime variation of 

the  coefficients H, and H,. A periodic  pitch  disturbance  produces  no  steady-state  response  in  the  roll,  

yaw, or gimbal  axes. 

The  detai ls   associated  with  the  appl icat ion of the  Floquet  criterion  to  this  modified set of varia- 

tional  equations  follow. 
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A  convenient  starting point for developing a mechanism  by  which  the state transition  matrix  can 

numerically  be  evaluated  for  the  generalized gimbaled-reaction-wheel-scanner class of spacecraf t   was  

to rewrite  the  roll ,   yaw,  and gimbal equation set in  its s t a t e   s p a c e  form. 

Define  the  vector X = (x1, x2, . . . , xs) as  follows. 

x2 = 

x3 = Y 

x4 = 4 

where 

x 5 = $  J 

X = A X ,  

and A includes  the  periodically  varying H, terms. 

Substituting  these  quantities  into  the  roll,  yaw,  and  gimbal  equation  set,  [Equations (5.1), (5.2), and ( 5 . 3 ) ] ,  

Equation (5.4) can  be  written  directly. 

Each  of  the  terms  that  form  the  elements  of  the A matrix is constant  except H, and H,. Figure 5.1 illus- 

trates  the  approximation  that  was  used to describe  these  terms. 

In  each  of  the  regions  over  which H ,  and H, are  simultaneously  constant,  the  state  transition  matrix  for  the 

time-varving  coefficient  case, @(t + 7/4, t),  can be replaced  by the  state  transition  matrix  for  the  constant  coeffi- 

cient  case, @[(t + 7/4) - t] , where 7 is the  period  of  the  periodically  varying  coefficients,  and  the  resulting  matrix 

is 

@[(t + 7/4) - t ]  = e 

5.5 Numerical Example 

For a  numerical  example  utilizing  Floquet  Theory,  consider  the  stability  of  the  Delta-Packaged  Attitude- 

Control  System  (Delta-PAC)  when  acted  upon by an  external  periodic  pitch  disturbance  torque. 
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Figure  5.1-Approximation for momentum  bias  variations,  (a) H b  = H ,  + dH S - t ,  
2n 2n 

2n 
T 

and (b) Hi = -  dH C - t. 

The mission  of  this  Delta-PAC  spacecraft  was to  experimentally  test  the  concept of a gimbaled-reaction- 

wheel-scanner  controlled  vehicle.  The  spacecraft was  designed and  fabricated at Goddard  Space  Flight  Center, 

Greenbelt, Md., and was launched  successfully on August 9, 1969. 

The Della-PAC spacecraft  has a gimbal axis  angle /3 of  zero  (i.e.,  the  gimbal  axis is coincident  with  the 

spacecraft  positive roll axis). I n  addition,  the  inertia of the  spacecraft roll axis  equals  that  of  the  pitch  axis so 

that a = p .  These  assumptions  simplify  the  system A matrix  and  the  resulting  matrix  equation is shown  below. 
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In order  that it be possible to evaluate  the  state  transition  matrix  for  various  values  of  the  system  parameters 

as  well  as for  various  values of dH and 7, it was  convenient to develop  a digital computer  program.  This  program, 

given the  system  parameters,  evaluates  the  elements  of  the  state  transition  matrix +(T, 0) and  then  evaluates its 

eigenvalues  for  various  values  of dH and 7. 

Clearly,  for  the  case  of dH = 0, the  solution  obtained  by  means of Floquet  theory  must be identical to tha t  

obtained if one were to apply classical linear-equation  theory  to  the  constant  coefficient  system A matrix. 

Numerical  values  associated  with  the  nominal  set  of  Delta-PAC  parameters  follow: 

B = 0.5 ft-lb/rad-sec-' 
g 

Ho= - 2 ft-lb-sec . 

a = 8  

p = 8  

I = 200 ft-lb-sec2 

no= rdd/sec 

K g =  0.8  X ft-lb/rad 

System  characteristic  values  derived  from classical linear theory  are  shown  bclow.  The  eigenvalues  are 

denoted  by W j ,  where Wi may be complex. 

i- 4.5 I 636 x I 0-2 

W = - 0.141329 X ' j  1.9687 X 

1- 0.768568  X k j  1.1053 X 

The  general  solution for the kth system  state  can be written  by  partial  fraction  expansion i n  the  form 

Xk = eke -4.51636 X 10-21 -0.141329 x 
+ e  ( A k l  S(1.9687X  10-3)t+Bk1C(1.9687X I 

-0.768568 X 104f 
+ e  ( A k 2  S(1.1053 X 10-3)t+Bk2C(1.1053 X 10-3)t I . 

Solving the  equivalent  problem  by  means  of  Floquet  theory  requires  the  assumption  of a nonzero 

periodicity even though dH has  been  assumed  to  be  zero.  This  assumption  of a nonzero  period is required, 

because  for  the  piecewise  constant  coefficient  case, 
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f the The  period, in this  case, is fictitious  and is of no consequence  since it is normalized  out in the  evaluation o 

characteristic  exponents. 

Two  arbitrary  periods were chosen,  and  the  resulting  characteristic  multipliers,  the  eigenvalues  of  the  state 

transition  matrix,  are  discussed  below. 

(1)  For dH = 0, 

wo = = 1 .O X rad/sec, 
7 

= eigenvalues of @(r,O) . 

In Xi Re(1n Xi) Im(ln hi) 
r .  = ” - 

7 7 
- + i  

and . .  - *  

-0.0768 X 5 ; -  
37.9O 

. Only  the  primary  value of Im( In hi) 

-0.141329 X +i - 
7 

1 1 . 2 O  need be considered. 
7 

5 
r .I 

X k  = C e I P J t ) ,  
i= 1 

where Pki(r) is periodic  having  a  period T. 

Before  proceeding  further  with  the  numerical  examples,  it is necessary to  explain  the  asterisk as it  appears 

in the h and  the r equations. 

As the ri’s will  in fact  be  identical to the  system  characteristic  values  found by classical methods, it  is 

possible to calculate  the  particular Xi that  would  correspond  to  a given ri. Taking 

Wi = - 4.51636 X = r i ,  

In Xi Re(In X i )  Im(1n Ai) 
+; - 

7 ’  
r ,  =- -  

I 7 
- 

7 
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or 

For 

- = 1 .O X rad/sec, 271 

In l X J =  27~ X 1O3(-4.51636 X 

7 

or 

Xi 0.575 X IO-' 2 2 .  

As a  result  of  this  exercise,  two  facts  immediately  become  evident.  First, it is not  possible to  extract 

accurately a root  of  this  magnitude  by  numerical  methods  from  a  fifth-order  polynomial.  Second,  the  accuracy 

of  the  remaining roots are  essentially  unaltered  because of the  many  orders  of  magnitude  that  exist  between  this 

root  and  the  other  four hi's. 

Numerical  methods have given results in the  order  of IO- '  for the Xi i n  question,  clearly  a grea: deal 

smaller  than  either X = 0.616988 L f 37.9" or X = 0.41 1479 L k 1 1.2". 

Because of the  nature  of  the  system  under  study,  one  time  constant  (the  one  associated  with  the gimbal 

itself) will always  be  very  much  shorter  than  the  others in the  system, 

ThroughoJt  the  presentation  that  follows,  therefore,  one of the five roots will  be omitted in light of  this 

discussion. 

Continuing,  then,  with 

which is the general  solution for the  system  state k ,  and  expanding, we obtain 

31.9 ~r . 31.9 71 

~k = e".Pk l ( t )  + e- 0.141329 X [e+i- 180 r i p  k*() + e "m k3( ) 1 
0.768 X 

+ j  - t 11.2 Tr -1 - 11.2 T r r  

+ e- 180 ' Pk4(t) + e ''' ' P t k5( 1 ' 
Because Xk must  be a real function  of  time,  each  of  the  bracketed  terms  must  also  be  real. Because the 

exponentials  themselves give  rise to  complex  quantities,  the  two  products  that  appear  within  each  bracket  must 

be  the complex conjugate  of one another. 
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In  the  numerical  example  given,  the  frequency  associated  with e’j(37.9/180)(T’T)r is 0.1056 X rad/sec, 

whereas  that  associated  with e’j(11.2’180)(n’T)t is 0.0306 X rad/sec. 

Recalling that Pki(t) is a  periodic  function  with 2n/r as  its  fundamental  frequency  of  oscillation,  then  it is 

possible to represent  the  bracketed  terms  as 

where 1 may or may  not  be  finite.  The 6,??’s are  the  sum  and  difference  frequencies  resulting  from  the  product  of 

the  periodic  exponentials  and  the  various  harmonics  of  the  periodic  functions Pki(f). 
A shortcoming  that  immediately  becomes  apparent  when  this  method  of  comparison is attempted is that 

without  previous  knowledge  of  the  solution,  it is not possible to  determine  which  of  the Ctni’s and/or Dtni’s will be 

nonzero.  However,  Floquet’s  intent  was  only  to  demonstrate  asymptotic  stability or instability.  In  the  numerical 

examples  that  follow,  an  attempt  has  been  made  to  extract  from  the  set  of  characteristic  multipliers  stability  infor- 

mation  and  information  concerning  the  frequency  and  damping  ratio  of  each  of  the  solution  modes. 

+ e- 0.141329 X 10-3t C 12,S(2w0 - 0.0306 x 10-3)t + D 12kC(2w0 - 0.0306 x 10-3)t ) 
for Pk,(t) constant. 

The  constant Cllk represents  the  first  nonzero  sine  coefficient  associated  with  the  first  bracketed  term  for 

the  kth  system  state,  and C12k represents  the  first  nonzero  sine  coefficient  associated  with  the  second  bracketed 

term  for  the  kth  system  state.  The Dmik’s are defined  in a similar  manner. 

(2) Next,  for dH = 0, 

wo - - 2 = 2.2 X rad/sec , 
T 
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. . .  
0.66788L+ 37.8" . 

0.8029 L 2 179.1 3" 

and . . .  

-0.076856 X 

10-3 + i  - ~ 

37.8" 
7 

179.13" 
10-3 +-i - 7 

179.13 nt  179.13 ?'rt 

+ e- 0.76856 X 10-4t  Pk4(t) + e ' Pk5(r> -i 1 

- 0.23 X 1 0 - 3 ) t )  

Once again, previous knowledge was  required  to  determine  the specific 6,'s required. 

Since  the  applicability of the  Floquet  approach  has been demonstrated, numerical establishment 

of stability  thresholds with the  following digital computer search routine is  now possible. 

For a  set of parameters  representing  a  stable  spacecraft  configuration,  the  variational momentum 

dkf for a given  frequency 27717 is increased from zero until  the magnitude of the largest \ X i \  equals  one. 

This condition  defines  the  threshold of instability in  the  Floquet  sense.  Floquet  states  that a system 

whose state  transition matrix has  at  least one root of magnitude one has  at  least one  term in its gen- 

eralized time solution whose damping factor has been reduced  to  zero. Whether or not the  steady- 

state time solution  that  results  at t h i s  threshold is  periodic  depends on those  conditions  discussed 

in  Section (5.3). 
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To  appreciate  better the physical  interpretations that  can be obtained from a Floquet  analysis, 

the numerical example that was begun with dH = 0 is continued with dH > 0. In exploratory  numerical 

work, the maximum effect of the momentum variation  was  obtained when the  perturbation  frequency  was 

twice the  frequency of the  least damped  root of theunperturbed  system. For this  reason, 27717 = 2.2 X 

lom3 rad/sec  was used a s  a driving  frequency in the following example.  The state  transition matrix 

eigenvalues and the associated time solution is given for each of the  three values of variational mo- 

mentum dH considered. 

( 3 )  For dH = 0.1 ft-lb-see, 

-0.88 

-0.72 

0.527 f: j0.41 

and 

Only the  principal values of In X i  are  considered. 

xk = e' . 'P,,(t) + C lkS(nWO ? 0.23 X 10-3)t + D lkC(nWO ? 0.23 X 10-3)t) x 

-p ) . 

1 
+ (  I {  ,-0.0448 x 10m3t + ,-0.11555 x 10-3t WO 

c ~ ~ ~ s s ( ~ W ~  y)t + D12,C(nW0 
WO 

It is reasonable  to  believe  that  because dH is small in comparison with H o ,  the frequency  con- 

tent of the perturbed solution  should be  very close to that of theunperturbed  solution. 

Therefore, knowledge of the problem indicates that 

X k  = e .  . -p  ( t )  + e-O.14 X 10 t 
-3  

kl { c 
l k S ( ~ O  -0.23 x 10-3)t + D lkC(oo - 0.23 x 10-3)t) 

W O  
+ ,-0.0448 x 10-3t 1 O0 I C,2kS(WO - -p + D,,,C(W, "p 

+ e  
WO 

-0.11555 X c 13k~(WO - z) t  + D 1 3 k ~ ( W 0  - 
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The  general   solut ion of this  perturbed case is similar to that of the  unperturbed case except   that  

A h e ~  exponential   associated  with  the least damped  resonance  has now  broken  into  two  parts,  one  more 

lightly  damped  and  one  more  heavily  damped  than  that of the  unperturbed  solution. 

(4) For dH = 0.2 ft- lb-sec,  

A =  

and 

KT = 

Making u s e  of previous  information, 

. . .  

-0.9715 

-0.657 

-0.5283 2 j0.412 

-0.0288 + jn 

-0.42 + jn 

-0.4 ?j - 37.7 
180 

+ e - ~ .  147 x (c,~,s("O - z > t  "0 4- D 13kc(WO - 

As in the previous  example,  the  unperturbed  dominant time constant term has   been  spl i t   in to   two 

terms.  One is even more lightly  damped,  and  the  other is even more  heavily  damped  than  those  in 

Example 3. 

(5) Finally,  for dH = 0.3 ft-lb-sec, 

and 
. . .  

KT = { +0.0659 _+in 
-0.528 ?in 

-0.4 +j-n 37.7 
180 
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The  general  solution i s  written, 

Once again,  the exponential associated with the dominant unperturbed system root has  split. In 

this  case, although one  term has become more heavily damped than its counterpart in  Example 4,  the 

exponent associated with the other has gone  through zero and become positive. A s  a result, for 

a0 = 2.2  X rad/sec and d H  = 0.3 ft-lb-see, xk for k = 1, 2 ,  . . . ., 5 is unstable. 

Given the proper set of initial  conditions, the initial  transient of the unstable case .exemplified by 

Case 5 is more heavily damped than  any of the  stable  cases.  Also, for w0 = 2n/r  = 2.2 x rad/sec, 

the  secondary  system resonance is  relatively unaffected by the small amplitude time variation of 

the  coefficients.  Finally in the neighborhood of the Floquet  threshold,  either above or below it,  the 

dominant frequency observed in the time solution will be w 0 / 2  as long as the threshold  eigenvalue 

remains X = - 1. In the neighborhood of this  threshold,  the unperturbed system root associated with 

this particular  eigenvalue is the least damped system  root. 

A linearized  digital computer simulation program was written to  illustrate more clearly the phe- 

nomena  under discussion. The time solutions  associated with Cases 1 through 5 generated by this 

simulation are shown  in Figures 5.2 and 5.3. 

After the  Floquet threshold of instability  was  established for w 0  = 2n/7 = 2.2  X rad/sec, 

where wo is the frequency of the time-varying coefficient,  the numeric search was continued by per- 

turbing w 0 / 2  both above and  below the dominant  unperturbed system  resonance onl .  A s  lanl - (w0/2>l 

was allowed to  increase from zero, it was found that  the dH required to  cause the  system to become 

unstable was increased from that found when w 0 / 2  = on 1. Furthermore, as long as 0 , / 2  did not  ap- 

proach too closely w n 2 ,  the secondary resonance frequency of the unperturbed system,  the eigenvalue 

associated with the Floquet  threshold remained X = - 1. This factor indicated that the dominant fre- 

quency of the time solution, in the neighborhood of the Floquet  threshold (X = - 1). was half that of 

the driving frequency of the  periodic coefficients.  Specifically, the time solution corresponding to  the 
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Figure  5.2-Time  solutions for Cases 1 or 2. dH = 0, I.C. = 6 = 0.05"/sec, and al l  other  system 
c 
0, P I states  are  initially  zero.  Angles  are  in  radians. 



(b) dH = 0.2 ft-lb-sec, X,,, = - 0.9715 
a a 

I (c) dH = 0.3  ft-Ib-sec, A,,, = - 1.07 

Figure  5.3-Time  solutions for Cases 3, 4, and 5. I.C. = $ = 0.05O/sec, andall  other  system  states  are  initially  zero. o, = 2.210,. 
Angles  are  in  radians,  variational H ,  is  in  ft-lb-sec. 



threshold value of dH was periodic  with  basic  frequency 0 , /2 .  This phenomena  can be observed  in 

Figure 5.4. 

A s  0 0 / 2  approached un2,  the  eigenvalue  corresponding to the  Floquet  threshold  was now  complex 

and  the  corresponding time solution  was  no  longer  periodic.  Corresponding time solutions  are  shown 

in  Figure 5.5. 

Finally,  in the  vicinity of 0,/2 = anZ,  if dH is increased  past   the   f i rs t   Floquet   threshold,  a sec- 

ond  threshold is found  for  which  one of the Ai = - 1. This   de ta i l   wi l l   be   d i scussed   in   Sec t ion  (5.7). 

The  resu l t s  of the  numerical  study  under  discussion  are  presented  in  Figure 5.6. In this   graph,  

the  value of dH necessary to exceed  the  Floquet  stabil i ty  threshold  has  been  plotted as a function of 

0,312, one  half  the  applied  torque  disturbance  frequency.  The  points  denoted  with a “A” corre- 

spond  to  eigenvalues of minus one, and  those  marked  with a “0” correspond  to  complex  eigenvalues 

whose  magnitude is equal  to  one,  

It is clear that dH h a s  its minimum value at o,/2 = on and  that  the  secondary minimum assoc i -  

ated  with  the  complex  eigenvalues  occurs  in  the  interval  between w,/2 = on and w,/2 = w n 2 .  

A linearized  simulation  was  used to validate  the  results  obtained  through  the  use of Floquet 

theory so that  the  mathematics of Floquet  would  not  be  obscured by the  nonlinearities of the  system. 

If an  instability  were  observed  for a particular  set  of spacecraft  parameters  in  using  the  linear- 

ized  system of equations,   then  thenonlinear  equations would also exhibi t   th is   instabi l i ty ,   a t  least 

for small angle  spacecraft   variations.  

5.6 Summary of Results 

As a result  of the  numerical  study, it was  possible  to  deduce  certain  general   conclusions  concern- 

ing  the  effect of a periodic  pitch  disturbance  torque  upon  the  stability of this class of system.  From 

the  general   discussion  that   preceded  the  numerical   example,   one  can  recall   that   when  the  threshold 

eigenvalue  was X = - 1, the  dominant  frequency of the  time  solution  will  be  half  the  driving  frequency 

of the  periodic  coefficients.  Accordingly, if  the  threshold  eigenvalues  for  driving  frequencies  in  the 

vicinity of twice  the  dominant  resonant-peak  of  the  unperturbed  system are in fact X = - 1, it  should  not 

be surprising  that   the most cri t ical   frequency,  that   frequency  associated  with  the  smallest   value of dH 

that   will   drive  the  system  unstable,   was  exactly twice that of the  dominant  damped  frequency of the  un- 

perturbed  system. 
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1 
a 
d 

'/ (0) dH = 1 ft-lb-sec, A m o x  = - 1,017, a0 = 1.61Qo 
' . I  

Ten-period  average = 130.3 

4 (b) dH = 0.25 ft- lb-sec, hmax = - 1.02, a,, = 2.21a0 
Z r n  

(c)  dH = 0.75 ft-lb-sec, A m o x =  - 1.007, o0  = 2.81Q0 
1 

Figure  5.4-Time  solutions  i l lustrating  frequency  tracking  characteristics.  Each  case  is  run  for dH near  the  Floquet  stabil ity  threshold. 

I . C .  = 4 = 0.05°/sec, and  all  other  system  states  are  init ially  zero.  Angles  are  in  radians,  variational H,  i s   in   f t - lb-sec.  



(a) d H  = 0.525 ft-lb-sec 
I 

S I  

I 

b )  dH = 0.575 ft-lb-sec 

-, 

*I . . .  

Figure  5.5-Time  solutions  i l lustrating  nonperiodic  instabil ity. I .C .  = + = 0.05"/sec,  and a l l  other  system  states  are  initially  zero. oo = 

3.2Q0. For dH = 0.55 ft-lb-sec, A m o x  = - 0,581 t j0.808, I h m o x [  : 0.9951; for dH = 0.6 ft-lb-sec, A m a x  = - 0.596 2 j0.822, ( X m a x l  = 1.015. 
+ 
ul 0 Angles  are  in  radians,  variational H ,  is  in  f t- lb-sec. 
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Figure  5.6-Floquet  stabi l i ty  thresholds, dH versus 00/2. dH i s   in   f t - lb -sec   and 

is  the  ampl i tude  of   a  s inusoidal   d isturbance. wo i s  in  orbit   rates  (one  orbit   rate 

i s  10-3 rad/sec)  and  is  the  frequency  of  the  driven  coefficient. 

Moreover, the class of systems studied  comprises  characteristically  lightly damped systems. ln- 

tuitively, one would expect  that if it were possible to make the  system  unstable by means of a periodic 

disturbance in  pitch, the time solution would  show the least damped resonant  frequency of the unper- 

turbed system as  its dominant frequency component. But this  suggests  that if the  eigenvalue associ- 

ated with  t.he  most easily  excitable  instability  is X = - 1, the associated driving frequency would be 

w,/2 = w ,  1' 

It would be  reasonable to  assume  that  the  general  nature of the dH versus w0/2  curve  does not 

change  appreciably as the system  parameters  are perturbed about their nominal values.  Thus,  the min- 

imum value of dH and its  associated 0, /2  was found for various sets of system  parameters. 

Let the ordered pair ( d H ,  0,/2) be that pair of values  corresponding to  the  lowest minimum of the 

dH versus 00/2 curve a s  illustrated by Figure 5.6. Because  it  was  expected  that the  threshold eigen- 

value  corresponding  to this minimum would be hi = - 1, the w0/2 in  the ordered pair must exactly  equal 

the  frequency  associated with the most lightly damped  root of the unperturbed system.  This  frequency, 

on was found  by setting dH = 0. The  critical  value of dH was found numerically by increasing dH 

from zero until  the first A j  = - 1. It was  verified that  all other lhil < 1. 
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Table 5.1-Parameter  variation  study. 

Case no. 

I 

I1 

I11 

IV 
V 

VI 

v I1 

VI11 

IX 

X 

~ 

Nominal parameter 
set except  that 

~~ 

H ,  = -1.575 ft-lb-sec 

H ,  = -2.48 ft-lb-sec 

kg = .8 X ft-lb/rad 

k = .8 X ft-lblrad 

B = .25 ft-lb-seclrad 

B = 1.0 ft-lb-sec/rad 

1, -= 190 ft-lb-sec2 

I ,  := 190 ft-lb-sec2 
a : p = 7.6 

l z  = 230 ft-lb-sec2 

l z  = 230 ft-lb-sec2 
a = p = 9.2 

g 

g 

g 

:- p = 9.2 

a = p = 7.6 

0.2 

.2 

.025 

.3 

.1 

.4 

.2 

.2 

.2 

.2 

dH 
(ft-lb-sec) 
-~ 

~ 

Largest I A i J  

-0.989 

- .966 

- .997 

- .9498 

- .987 

- .9566 

- .969 

- .9756 

- .97 

- .967 

dH 
(ft-lb-sec) 

0.3 

.3 

.075 

.4 

.2 

.5 

. 3  

.3 

.3 

.3 

Largest ( A i (  

-1.115 

-1.04 

-1.017 

-1.05 

-1.08 

-1.05 

-1.066 

-1.07 

-1.07 

-1.067 

This numerical search was  performed  for 10 sets of parameters.  The parameter sets and the 

results  are shown in Table 5.1. A s  might have been expected,  those  cases  associated with the  high- 

est  value of effective damping required the  largest dH to  make the  system  unstable, and those  associ- 

ated with the  lowest  value of effective damping required  the smallest d H .  The  linear  simulation  was 

used to substantiate  the  threshold  values  corresponding to the two extreme cases,  Case I11 and Case 

VI, and the  resulting time solutions  are shown  in Figures 5.7 and 5.8. 

In the  description of the method  for creating  the  state  transition matrix + (T. 0). it had been 

stated  that  the  sinusoidally varying component of pitch-momentum bias  variation and the  cosinusoid- 

ally  varying 8 ,  term  would  be approximated by quadrature  square  waves. Thus,  each of the time solu- 

tions  considered  until now was obtained with square-wave  disturbances. To better  appreciate  the  valid- 

ity of this approximation,  the same set of runs shown i n  Figures 5.7 and 5.8 were repeated  using 

sinusoidal  disturbance  torques.  These time solutions  are shown in  Figures 5.9 and 5.10.  The two 

sets of runs exhibit  very  similar  solutions. 
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(a) dH = 0.025  ft-lb-sec 

:I (b) dH = 0.05  f t - lb-sec 

'1 -1 

J 

(c) dH = 0.125  ft-lb-sec 

- 

Figure  5.7-Time  solutions for parameter  variation  Case I l l  (square-wave momentum variation). I.C. = 6 = O.O5'/sec, and a l l  other  system 

states  are  initially  zero. w o  = 2.739Q0.  For d H  = 0.025  ft-lb-sec, Amax = - 0,9968; for dH = 0.075  ft-lb-sec, x,,, = - 1.017.  Angles  are 

in  radians,  variational H ,  is  in  f t - lb-sec. 



I (a) dH = 0.35 ft-lb-sec 

(b) dH = 0.45 ft-lb-sec 

B 

(c) dH = 0.55 ft- lb-sec 

I 
: 

Figure  5.8-Time  solutionsfor  parameter  variation  Case VI  (square-wave momentum variation). 1.C. = 4 = 0.05O/sec, and all other  system 

states  are  in i t ia l ly  zero. w o  = 2.266Q0. For dH = 0.4 ft-lb-sec, A m o x  = - 0.9566; for dH = 0.5 ft-lb-sec, X m a x  = - 1.05. Angles  are  in c 
0 
CD radians,  variational H ,  is  in  ft- lb-sec. 
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(a) dH = 0.025 - ft-lb-sec 
4 
n 

n 

Figure  5.9-Time  solutions for parameter  variation  Case I l l  (sine  wave momentum variation). I.C. = 4 = O.O5O/sec, andall  other  system 

states  are  initially  zero. oo = 2.739a0.  Angles  are  in  radians,  variational H ,  i s  in  ft-lb-sec. 



(b) dH = 0.45 - ft-lb-sec 
4 
77 

3 

Figure  5.10-Time  solutions  for  parameter  variation  Case V I  (sinewave momentum variation). I .C. = 4 = O.O5'/sec, andall  other  system + 
F 
c. states  are  ini t ial ly zero. wo = 2.266Q0. Angles  are  in  radians,  variational H, i s  in  f t - lb-sec.  



5.7 An Attempt at a Generalized  Floquet Approach 

An attempt to handle the  Floquet problem in a mors general manner is discussed in this  section. 

Although this approach did  not result in  the  analytic  solution  sought,  it is believed  that with some 

additional work, the  general analytic solution of the problem type considered here could be found. 

The  systems  studied rely to a large degree on gravity-gradient torques for control  purposes. 

These  systems  are  lightly damped, and their dominant frequency is close  to orbit rate.  Because of 

these  characteristics, it would  be expected  that  the general  nature of the dH versus 00/2 curve 

shown in  Figure 5.6 would be  applicable  to most practical  systems of this  type,  at  least in the neigh- 

borhood of w 0 / 2  = w n l .  Practical  systems  are defined as  those  systems composed of realizable sets 

of parameters. In the neighborhood of w0/2 = w ,  1, the dH that is  required to make the  system unstable 

i s  small with respect  to the bias  itself.  Hence, once  again it would be reasonable  to assume that 

h = - 1 throughout this neighborhood. 

Accordingly,  at the stability-instability  transition,  at  least for driving frequencies in the neigh- 

borhood of twice  the dominant unperturbed system  resonance on the  steady-state time solution wil l  

be purely periodic and will  have as its  basic frequency 00/2, one-half the frequency of the driven co- 

efficients. If this were true, the solution for this class of system could be assumed to be a  Fourier 

series whose basic frequency is w0/2. In this manner,  one could determine analytically  those con- 

straints imposed upon the general  set of parameters for the solution  to be periodic.  The  goal, of 

course,  is to convert the numerical Floquet problem into  an  analytic  one. 

The  suggested procedure wil l  be demonstrated through the  use of a quasi-characteristic equation 

that will be developed for the time-varying system.  The assumed  solution was 

where w = w0/2 and w 0  is the frequency of driven coefficients.  The roots of the unperturbed  fifth-order 

system wil l  be composed of a complex pair associated with the dominant system resonance plus a real 

negative  exponential associated with the gimbal. The complex pair associated with the  system reso- 

nance will be lightly damped and will have a frequency near orbit rate, whereas the  real negative root 

associated with the gimbal will be a heavily damped root. The remaining two roots will probably be 

associated with a  secondary resonance, more heavily damped than the primary resonance. 

If the system parameters are  chosen so that a pure oscillation will be sustained in the neighbor- 

hood of only the dominant resonance for a given value of d H ,  then two of the solutions of the  yet-to-be- 
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developed  quasi-characteristic polynomial in w must be  real and positive. All  other solutions will be 

either complex or negative. A complex w indicates  that one  term in  the actual time solution is a 

damped oscillation, and a purely imaginary root wil l  indicate  that one  term in  the time solution is a 

sample  exponential. In the  limit,  a pair of repeated  positive  roots in the o polynomial for a given set of 

system  parameters and an associated  value of dH indicates  those  constraints dictated by the lowest min- 

imum of the d H  versus o,/2 curve. This threshold i s  the one sought analytically.  Finally, if the  system 

parameters  together with a particular  value of d H  can  sustain pure oscillations in  the neighborhood of 

both the dominant  and the  secondary  system  resonances, then o will  have four real  positive  solutions. 

If two of the four real  positive  roots are repeated, we have found those  constraints  associated 

with the  secondary minimum. But this threshold is of questionable  value  because it probably lies Out- 

side  the neighborhood  for  which OUT original  assumptions  are  valid. It should be emphasized  that  the 

applied  pitch torque disturbance must have a  frequency  equal  to oo = 2w rad/sec and  an amplitude 

equal to dH to realize any of the oscillatory conditions described. 

Time solutions not periodic in nature,  such as  those cases  associated with the "0" points of 

Figure 5.6,  do not  become evident through the  use of this  approach.  To  solve  these  cases, an infinite 

set of Fourier series, rather  than a  single Fourier series must be assumed. 

This  section  discusses  a  possible  approach  to  reduce  these  concepts to practice. For reasons of 

simplicity of presentation,  a  special  spacecraft configuration has been chosen.  This configuration 

was  the subclass of gimbaled-reaction-wheel-scanner spacecraft for which a = p and P ~~ 0. These 

conditions mean that  roll  inertia i s  equal  to  pitch  inertia and the gimbal axis  is located along the 

positive roll axis.  Clearly, the  general case can be treated simply by beginning with the  complete 

system A matrix  shown  in Equation (5.4) rather  than  the  modifiedmatrix shown in  Equation ( 5 . 5 ) .  

X = AX,  

where A i s  defined in  Equation (5.5). Replace H b  by H ,  + dH Swot, A,  by wOdH Coot, and H E  by 

H i  + 2 H o d H  S o o t  + dH2S200t .  

Assume 
r m  1 

A Cnot  + B In Snot 

A , ,  Cnot  + B,, Snot 
n= 1 
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and 

X =  

where w = 00/2. 

m 

(noB,, Cnot - noA,,, Snot 
n= 1 I 

After substitution and separation of terms,  the  resulting matrix representation of the set of first- 

order differential  equations may be expressed as  

0 1 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 1 0 

. Qo " Q O  - - 1  

Bgl  Bgl 
0 

L 

c m 

n= 1 

m 

A,,, Cnot  + B,, S n d  
n= 1 
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+ dH Soot 

+ dH CwOt  

L 

0 0 0 0 

QO 
0 - 

a1 

0 0 3 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 -  - w o  
I 0 0 

0 0 0 0 

0 

m 

J 

A , ,  Cnwt + B,, Snwt 
n= 1 

m 

t 1 .  w = 00/2 

It i s  apparent from Section (5.3) that it  is  necessary  to  consider only  odd values of n when 

h = - 1. Furthermore, if the  function is to be  periodic  in w = w 0 / 2 ,  then  the coefficients  associated 

with the n = 1 term  must  be  nonzero. 

Using common trigonometric identities for expanding  products of commensurate sines and cosines 

it is possible to rewrite  the  trigonometric  products that appear in Equation (5.6) a s  

m 

n odd 
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n odd 

and 

n odd 

+ [B,, - !h ( B k 5  - B,,)] hC + [ A k 3  - !h ( A k l  + Ak7) ]  C3ot + [ B k 3  - !h (Bk7  - Bkl)] s3oC) 

If all odd values of n were to  be  included,  a matrix with an infinite number of rows  and columns 

would have to be dealt with. Therefore,  the  fact  that  the  system i s  lightly damped  and that  it  has  a 

dominant resonance near orbit rate must  be used.  Accordingly,  the  response of the  practical  system 

wil l  fall off rapidly  to  the right of this  resonance so that  even  the  third harmonic wil l  be heavily 

attenuated. 

A Fourier analysis was performed upon one of the cases  discussed  earlier  to  illustrate  this point. 

Case I11 of the parameter variation study was chosen, and the  Fourier coefficients  associated with the 

derivatives of each of the  five  system states are shown  in Table  5.2.  The  computation of these  coef- 

ficients  was performed within  the linear  digital  simulation. 

Table  5.2-Fourier  coefficients  associated with simulation  Case 111. 

Derivative of system 
state 

4 

x5 * x4 6 
x 3  r 
x2 4 
X 1  

I 
Square-wave disturbance Sine wave disturbance 

I 4- JX 
n = l  n = 3  n = l  n = 3  

0.139 0.132 x 0.132 0.145 x 

.191 x .524 x .18 x .593 x 10-6 

.305 .228 x lov2 .289 .244 x 

.555 x 10-1 

.940 x 1 0 - ~  .396 x . lo1 x 1 0 - ~  .417 x 

.565 x lo-, .527 x 10-1 .601 x 1 0 - ~  
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The numerical accuracy of the coefficients of the  fifth harmonic  and higher appeared  to be ques- 

tionable. Two reasons for this  inaccuracy are the problem of integrating over exactly one cycle and 

more importantly  the problem of adjusting dH so that we are  indeed at the threshold. 

The  Fourier coefficients were  computed  for  both sine wave  and square-wave  disturbance  torques 

despite  the  fact  that the sine wave disturbance is pertinent in th i s  situation.  The computation of the 

square-wave  coefficients was  included  to  illustrate  once  again the close agreement of the square- 

wave approximation with that of the sine wave disturbance. 

From the above discussion,  a  fairly good approximation should result i f  all terms other than n = 1 

were set to zero and  only those terms resulting 'from n = 1 were considered. If this is done,  five  rela- 

tively  involved  equations  can be written by making the  appropriate trigonometric substitutions. More- 

over, 10 relationships  can be written by equating the right- and left-hand-side  coefficients of Sot and 

C u t ,  respectively, for each of the five equations.  Equation (5.6) is rewritten to simplify  the 

development. 
- 
B l l  

B2 1 

w Cwt B3, 

B4 1 

B5 1 
- .  

0 

+ dH2 

L 

+ dH 

I 

"w Sot 

D O  

1 

1 

0 0  

0 0 0  0 0  

0 0 0  0 0  

'41 '43  '44 0 

0 0 0  0 0  
- 

O a12 0 0 0  

a21  a23  a24 

a3 1 O a33  a34 

a41  a42  a43 a44  a45 

0 

0 0 0 a54 0 

% Cot 

- 
0 0 0 0 0 1  

b 2  1 

b3 1 O b33  b34 0 

b41  b42  b43  b44  b45 

0 0 0 0 0  - 

+ % S o t  

+ % S o t  1 
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0 0  0 0 0  

0 0 0 0  

+ w d H  0 0 0 0 0  1 O d 4 3  0 0  

0 0 0 0  - 

where d 4 ,  = - 2/1 and w = w 0 / 2 .  

L 

% Cot + %. Sot 

Final ly ,  it is necessary to make the  assumption  that  A,, >> A, ,  and B,, >> B,,, 1 f 1. But  this 

assumptlon is no  different from the  decis ion to consider  only  the n = 1 related  terms.  From  Equation 

(5.7). the  ten  relationships  can  be  written  in  matrix form directly as shown  in  Equation (5.8). and  the 

determinant of the 10 x 10 matrix  yields  the  quasi-characteristic  polynomial  in w .  

Clearly,  had  we  retained  the n = 2 terms as well ,  our final  matrix  would  have  been 20 x 20 rather 

than 10 X 10, and so on. 

Through  the  use of digital  computer  manipulations,  it   was  possible  to form the  required  quasi- 

character is t ic   equat ion  in  o both  numerically  and  algebraically.  As  might  have  been  expected,  one 

must now deai  with a fifth-order  characteristic  polynomial  in a 2 .  All  odd  terms of the  tenth-order  poly- 

nomial  are  identically  zero.  After  transforming  the  previously  defined  threshold  criterion to the  poly- 

nomial  in 02,  the  purely  imaginary roots of the  fifth-order  polynomial  in w will  be real and  negative,  and 

the  repeated  positive  roots of the o polynomial  will  remain  repeated  and  positive  in  the w 2  polynomial. 

To determine  the  threshold of interest,  that  threshold  corresponding  to  the  detection of the  ordered 

pair ( d H ,  w 0 / 2 )  tha t   def ines   the   lowes t  minimum of the dH ver sus  w o / 2  curve,   i t   i s   necessary  to   re-  

so lve   the  set of constraints  for which  the  first  pair of real, posit ive,   repeated  roots  occur.  

Although it is possible   to   solve  this   problem  in  a manner  similar to that of the  Routh  technique, 

the  required  algebraic  manipulation  became  prohibitive  and  the  attempt  to  solve  for  this  threshold 

analytically  was  abandoned.  Additional work in  this area, however,  should  prove  to  be  profitable. To 

pursue  this  problem  further,  the  range of system  parameters  within  which  the  stated  approximations  are 

valid  must  be  studied. 

The  potent ia l   usefulness  of this  approach is demonstrated  by  presenting  the  results of a numeri- 

cal example. 
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Figure 5.1 1-Four ier   stabi l i ty   thresholds  super imposed  on  Floquet  stabi l i ty  

thresholds, dH versus w0/2. dH i s   in   f t - Ib-sec  and i s  the  ampli tude  of a sinus- 

oidal  disturbance. wo i s   in   orb i t   ra tes  (one  orb i t   ra te i s  rad/sec)  and i s  the 

frequency  of  the  driven  coeff icient. 

Once again the parameters associated with the Delta-PAC spacecraft were used.  These para- 

meters were inserted into  the 10 X 10 matrix leaving dH a s  the only  undefined parameter. A computer 

was  used to form the quasi-characteristic  equation, and the  resulting polynomial in w 2  was  factored 

for various  values of d H .  As.stated  earlier, only values of dH for  which positive  real  values of o re- 

sult are of interest. 

The numerical results of this approach have  been superimposedupon the dH versus w0/2 curve 

that  resulted from the  application of the  Floquet criterion, and the new plot is  shown  in Figure 5.11. 

Observe that  the agreement  between those  results obtained from Floquet and those  obtained from 

the  quasi-characteristic equation is excellent in the neighborhood  of w,  
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CHAPTER 6 

PERFORMANCE 

6. I General  Discussion 

Chapter 5 d i scussed   t he  effect of a pitch-axis  disturbance  torque  on  the  stabil i ty of the  passively 

controlled  spacecraft axes. For  that  problem,  only  the  homogeneous  roll,  yaw,  and  gimbal  equation 

set was  of interest ,   and it was  unnecessary  to  consider  the  associated  roll   and yaw disturbance 

torques.’  This  chapter  considers  system  performance,  which  relates  directly  to  the  determination of 

a disturbance  model  and  to  system  steady-state as well as transient  response  to  the  derived  disturb- 

ance  torques. 

An investigation of system  response  necessar i ly  uses a linear,  time-invariant  set of equat ions,  

such as Equations  (5.1).  (5.2),  and  (5.3).  where H b  is constant  and f i b  = 0. Once  the  response  charac- 

ter is t ics   have  been  es tabl ished,   i t   must   be  ver i f ied  that ,   wi thin  the  parameter   range of interest ,   the  set 

of equat ions  used  adequately  descr ibes   the  system  under   s tudy.  

Because  the  linearized,  time-invariant,  roll-yaw-gimbal  equation  set is completely  decoupled from 

the  pitch,  rotor,  and  error  equation  set,,  this  chapter  considers  only  the  roll  and  yaw  disturbance  torque 

components.  It  has  been  shown  that  in  the  passively  controlled  axes  the  momentum-bias  variation  re- 

sult ing from a pi tch-axis   dis turbance  causes  a reduction of system  damping  but  no  steady  state re- 

sponse.  Furthermore,  the  extent by which  damping  was  reduced is dependent  on  both  the  magnitude 

and  the  frequency  content of the  applied  disturbance  torque. 

The  performance  criterion  for a particular  control  system  must  be  dependent  on  its  actual  input, 

the  uncontrolled  disturbances  acting  on it, and  the  actual  output  requirements.  It is clearly  not  suf- 

f icient  to  require  that   the  system  step  response  to a posit ion or avelocity  input  be  well   behaved, nor 

is it necessary or sufficient to require  that  the  system  output  track a given  input  signal  faithfully. 

If, for example,   uncontrolled  disturbances  were  present  in  the  input,   then  perfect   following of the 

input  would  imply  that  the  output  would  follow  the  uncontrolled  signal  perfectly as well.  Conse- 

quently,   in  the  presence of the  disturbance  torques,  a compromise  must  be  made  between  faithlully 

following  the  desired  input  and  ignoring  the  uncontrolled  disturbances. 
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In the classical frequency-domain  approach to  feedback-control  theory,  a  system is nominally  con- 

sidered  to be sufficiently  stable, or sufficiently  well  damped, if its closed-loop  gain is less than two 

at  all  frequencies  (Reference 9). Nevertheless, if certain  frequencies  are  present only to  a  negligible 

extent in either  the  desired  input or in the  uncontrolled disturbances,  it would  not  be objectionable if 

the  system were  underdamped at  those  frequencies, for they would rarely be excited.  The error trans- 

fer  function  should be weighted,  therefore,  at  each  frequency  according  to its probability of occurrence 

and then  the total weighted error function  should be minimized. A control  system  can  then  be  de- 

signed  to  take  into  account  those  requirements  associated with a  particular  application. 

The gimbaled-reaction-wheel-scanner spacecraft  relies, to a  large  extent, upon gravity-gradient 

torques for the  purpose of control.  Consequently,  this  class of system is lightly  damped, and its dom- 

inant  frequency is near  orbit rate. The  vehicle in question is expected  to  maintain  a  single  orientation 

in space;  therefore,  its  control input signal  will be identically  zero. 

Moreover, the  so-called  uncontrolled  disturbances  result from specific environmental  phenomena, 

and their  frequency  content is well known. Phenomena  that  give rise  to  disturbance  torques  include 

atmospheric  drag,  solar  radiation  pressure, and residual magnetic moments. 

Because  the  magnitudes of these  disturbances are  heavily  dependent on the  altitude and inclina- 

tion of the  orbit as well as  on the  configuration of the vehicle, i t  is impossible to  make any precise 

statements  concerning  the  magnitudes of these  various  torques.  Qualitative  statements  regarding  the 

effect of orbit altitude upon these  disturbances, however,  can be made. Specifically,  atmospheric drag 

can be expected  to  be  the dominant disturbance only at  altitudes under a few  hundred nautical  miles. 

Only at  these low altitudes is the molecular density of space high enough to cause  the  atmospheric- 

drag term to be large. 

As the  orbit altitude  increases,  the magnitude of this torque decreases  sharply. For orbits  at  al- 

titudes over 400 nautical  miles, the residual magnetic  disturbance  torque  clearly  dominates over atmos- 

pheric  drag. 

The  magnetic disturbance torque is inversely  proportional to the  cube of the orbital  distance from 

the  center of the  earth,  whereas  the  solar  pressure  disturbance is related  to  the  distance of the ve- 

hicle from the sun. A s  a  consequence,  the magnitude of the  magnetic  torque falls off as  the  orbital 

altitude is increased,  until for altitudes over 10 000 nautical  miles,  solar  radiation becomes  the domi- 

nant disturbance. 
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Two other forms of disturbances  are  the internally produced disturbances and orbital  eccentricity. 

The  internal  spacecraft  disturbances must  be considered  separately  because they depend upon the 

mission of the  particular spacecraft under study. The incorporation of an  actively controlled  pitch 

loop allows f o r  the  inclusion of pitch  internal  torque-disturbance devices,  such as actively driven 

solar array panels and large data-collecting  tape recorders. These  devices must  be  mounted so that 

their momentum or torque vectors are  aligned along the spacecraft pitch axis if disturbance  rejection 

is to be  most effective. 

The  internal  torque-disturbance devices  cause  variations in the  speed of the  pitch  reaction  wheel 

but do  not change the total  spacecraft momentum along the  pitch axis.  Because the active pitch loop 

responds quickly (within a few minutes  at  most),  the  effect of high-frequency variations on the pas- 

sively controlled  roll and yaw axes  is  negligible. Most internal  torque-disturbance devices are sym- 

metrical about their  rotating axes. If they are  not, time-varying inertia terms will result in the  roll- 

yaw plane  equations. Driven solar panels  fall  into  this  category and are  treated separately in 

Chapter 7. 

The major effect of orbital eccentricity is to cause  a variation in the orbital  velocity of the 

spacecraft.  This  variation directly affects only the  vehicle  pitch rate, which i s  properly regulated by 

the actively controlled  pitch  loop. Here again. the total  spacecraft momentum is  unchanged, and the 

cffect upon the passively controlled roll-yaw plane is negligible. In addition  to  the  periodic varia- 

tion in orbital  velocity, there is  also an orbital period variation in  the coefficients of the  gravity- 

gradient  restoring  torque  terms. These  variations  are negligibly small, but they  could be handled by 

the techniques  developed in Chapter 5. Consequently,  internal  torque  disturbances and orbital  ec- 

centricity were  not given further consideration. 

The characteristics of the conical infrared attitude horizon scanner  used in vehicles of th i s  

class limit  the spacecraft orbit altitude  to between 400 and 800 nautical miles. Within this range of 

operation,  experience has shown that  the residual magnetic disturbance  torques, both those  resulting 

from the spacecraft  alone and those  resulting from current paths on driven solar  panels, are the dom- 

inant disturbances. It is with th i s  in  mind that  the discussion is continued. For any practical ap- 

plication, the potential user must demonstrate  that for h is  problenl the magnetic disturbance is in fact 

the dominant disturbance if  he i s  to make use of either the computer program referenced  later in this 

chapter or the conclusions  stated in the  ~lun~erical example presented in Chapter 8. 
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The  dipole model of the  earth's magnetic  field has been  derived by Wheeler (Reference  10).  The 

use of the earth's magnetic  field in conjunction with the  magnetic moment  of the  spacecraft and solar 

panel  assembly  results in the  fact  that the dominant frequency  components of the  residual magnetic 

disturbance  torque  are  constant, orbit rate, and higher harmonics of orbit rate. 

Because  the nominal system  input is zero, and because of the  limited  frequency  content of the 

dominant "uncontrolled  disturbances,"  this problem can be treated as  discussed  earlier.  Specifically, 

a meaningful performance criterion for this  class of problem would be one that  utilizes  the  total 

weighted mean square  error, which can be  computed by evaluating  the error response  functions  at  each 

of the  frequencies  resulting from the dominant disturbance  torques.  This  quantity  can be used as one 

element of a factor-of-merit  function, and it can be minimized as  a function of the  system  parameters. 

The  second  element of a meaningful factor-of-merit  function must involve  system damping or transient 

response.  This  element  can be factored  into  the performance criterion by the  consideration of only 

those sets of parameters for  which the time constant  associated with the dominant system  resonance 

is less than some predetermined value. 

6.2 Development  of Error Transfer  Functions 

Cyclic  pitch  disturbances  that  give  rise  to  time-varying  coefficients in  the roll, yaw, and gimbal 

equation  set  are  considered in detail in Chapters  5 and 7 .  For the  purposes of a harmonic response 

study, however, it i s  necessary  to  assume  that  these  variations  are  negligible. Chapter 8 attempts  to 

validate th i s  assumption and to verify  that  the  linearized  equation set adequately models the  nonlinear 

system within the neighborhood of interest. 

The error transfer  functions  that must be considered  are  those  that  relate  the  roll,  yaw, and  gim- 

bal  angles  to the  roll and  yaw components of the residual magnetic  disturbance  torques. 

The  required  transfer  functions  can be derived with the  equations  developed in  Chapter 3, Equations 

(5.1),  (5.2). and (5.3), and Kramer's  rule. 

p 1  G l ,  13 

1 G21 '22 '23 

L G 3 1  '32 '33 I " 4 

Y 

$ 
" 

'z: j 
where 4 = roll  angle, Y = gimbal angle, I/J = yaw angle, T , ,  = roll component of disturbance  torque, and 

T , ,  = yaw component of disturbance  torque. 
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{i I! \ j I ; 

The G matrix components  are 

By definition 

G l l  G 1 2   G 1 3  

A = 

G 3 1  '32 G 3 3  

G 2 1   G 2 2   G 2 3  

The desired  transfer  functions  can now be  written directly. 

R Go)/ = 
G 1 2 G 2 3 - G 2 2 G 1 3  

T d z  w = o  1 a 
0 

s = jol 

s = j o l  

R 
G 2 1   G 3 2 - G 3 1   G 2 2  

- L!L 60) 
3wl s = j w l  A T d x  

- 
o = o  1 

- G l l G 2 2 " G 2 l G 1 2  

0 = o1 
- 

A s = iol 
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Define R io  as the  ith  transfer  function  evaluated  at w = 0, R i ,  as the  ith  transfer  function  evaluated  at 

w = f l 0 ,  (flo = orbit  rate)  and R i 2  as the  ith  transfer  function  evaluated  at w = 2Q0. 

Algebraic  manipulation  yields  the  following  results  in  terms of the  normalized  parameters  defined 

in  Chapter 4 and of the  relation B ,  = Bad,. The  numerators of the  six  transfer  functions are 

A 4  
T d x  

( j w )  = [ (k  - h )  (a - p + C2@) + S 2 p h 2 ]  +{ p(a - p + C 2 p h )  + (k  - h )  [ S p h ( C p  - l)]) jo 

- ( h  [ S p B ( C p  - 1 )  - C 2 p h 2 ]  - (k - h ) )  w 2  + [ B ]  io3 , 

A 4  
T d z  

( j w )  = [- C p S p h ( k  - Zh)] + { ( k  - h )  E.- 1 - a + p - C p h ] -  S p h ( S p k  + C p B )  - C2ph2}jW 

- [B(p - a - 1 - CPh - S2ph)  + C p S p h 2 ]  m2 , 

A* 

T d z  
(jw) = [ ( k  - h )  (4 - 4p + C p h  + S2@) + C 2 p h 2 ]  + [- SPCph(k - h )  + hB(CP + S2p) 

+ 4B(1 - p)] j w  - [- a(k - h )  + Sph (- C p B  - S p h ) ]  w + [ B a ]  j w 3  , 

AY 

"sl; T d x  
( jw )  = [ C p h  (a  - p + h )  - S2/3h2] + [- S p h ]  io - [ C p h ( a  - p + h )  - S2ph2 ]w2  

0 

+ [ S p h ]  io3 . 
and 

AY 

12': T d z  
( i w )  = [4Sph(p - 1) - S p h T 1  + C p ) ]  + [ C p h ( -  a - 3p + 3 1  jw 

- [Sph(p - 1) - SL?h2(1 + Cp)] w 2  + [ C p h a ]  jo3 . 
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If the determinant A is evaluated, 

A 

I 
E 0'0) = [(k - h)( -  a + p - h)(4p - 4 - h )  - h2C2f3(- a + p - h )  -- h2S2p(4p - 4 - hf l  

+ [B(- a + p - h)(4p - 4 - h) ]  jo 

- [ ( k - h ) a S + h % 2 P ( 2 a + 2 p - 3 - - h ) + h 2 S 2 ~ ( - p + h + 2 ) ] a 2  

- B a 2 w 3  + [a(k - h )  + h2(aC2P + S2P)]  o4 + aSjo5 , 

where 

a 3  = a(-- p + 2 + h )  + p2 + 2(1 - h)p  - 3 + h + h 2 .  

6.3 Factor-of-Merit Function 

Unfortunately, i t   is  not possible  to arrive at  a unique factor-of-merit function by which  one could 

accurately measure overall system performance. However, a reasonable  choice for such a function can 

be  made on the basis of the special  characteristics of this  class of problem. This  section  defines a 

function chosen on the basis of the discussion in the first  section of this  chapter. 

where 4 (const) i s  the mean square of the roll angle resulting from constant  (i.e., not time-varying) 

components of the disturbance torques and the other mean square  quantities  are defined in an ana- 

logous manner. c4, C+, and C are weighting factors  assigned  to  each of the  three components of R.  

2 

Y 
In addition to the consideration of the mean square  steady-state  response function R ,  for transient 

response  to  be factored  into this performance criterion, one can require that  the  real exponential as- 

sociated with the dominant system resonance have a time constant less than some preassigned maxi- 

mum T,. Define T = 110 where (T is  the real part of the complex root  in question. 

The formulation of this factor-of-merit function affords  a potential user the tools by which he 

might choose a best  set of system parameters for a particular problem, given the  physically  realizable 

range of these parameters  along with  some  knowlege of spacecraft configuration, system damping re- 

quirements, and certain  orbit parameters. 
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Although the optimization of the R function as well as the  factorization of the  characteristic poly- 

nomial are far too complex to  be handled analytically,  this type of problem is well suited for programed 

digital computation. Given an array of possible system  parameters and certain  orbital information, the 

user can choose  the  best set  of parameters suited  to  his particular needs by allowing the computer to 

search  all combinations of parameter sets.  Restricting the search  to only those  cases  that meet the 

constraint placed upon the overall system  transient  response, the computer will single out that set  

associated with the minimum value of R. 

It is shown in the development that  follows  that for the spacecraft  alone, one with no driven solar 

panels,  the only orbit parameter  with  which the user must  be concerned is  the orbit plane inclination. 

This quantity remains essentially fixed throughout the life of a spacecraft. 

In general, the spacecraft magnetic moment has no preferred orientation.  This orientation is  dif- 

ficult and expensive  to establish before launch and, furthermork, is  often affected by the launch opera- 

tion itself. For this  class of spacecraft,  it was possible  to maximize the  response function R analyti- 

cally as a function of the physical orientation of the  residual  spacecraft magnetic moment in terms of 

the system  parameters.  The maximization of R assures the user that he has accounted for the orienta- 

tion  that would give rise to  the  worst-case mean square  steady-state  response. If the  actual  location 

of the magnetic moment i s  different from the worst-case  location, the actual resp-onse to  disturbances 

will be less than that predicted by the digital computer  program. 

A spacecraft with driven solar  panels  requires the  definition of certain additional quantities. For 

these  spacecraft,  the user must define certain information concerning h is  proposed orbital  parameters 

according  to the  needs of his particular problem. Specifically, he  must concern himself  with the time of 

year  of launch,  the projected spacecraft  lifetime, and the  angle between the  ascending node and the ver- 

nal equinox at  various  intervals throughout the spacecraft projected  llfetime. 

Here, the complexity of the steady-state  response function R precludes maximizing it  analytically 

for the  worst-case orientation of the  spacecraft magnetic moment; however, this maximization has been 

accomplished by incorporating a search routine within the  structure of the optimization program. Fur- 

thermore, if the user is  unable to  arrive at meaningful values for the required orbital  parameters,  those 

other than  orbital  inclination, or If the  projected  lifetime  and/or the  precession  rate of the orbit were 

such that  it would  be desirable  to maximize R as a function of these parameters as well, an alternate 

search routine has been incorporated into  the program to  eliminate the requirement of defining these 

parameters. These parameters will be discussed in detail in Appendix C. 

128 



Final ly ,   the   user  is f ree  to ass ign  the va lues  to T,, the sett l ing  t ime  constraint ,   and  the  weight- 

ing  factors  C+,  C+, ,and C that  would  be  commensurate  with  his  particular  mission. For example,   the 

weighting  factors  might  be  selected to emphasize  the  importance of a roll  error  while  downgrading  the 

importance of yaw  and  gimbal  angles if the  spacecraft   mission  were to point a sensor  or a spacecraft-  

mounted  communications  parabolic  antenna  toward  the  spacecraft  subsatellite  point.  On  the  other  hand, 

if the  mission  were  to   re lay  radio  s ignals   to  a second satellite in  the  same  earth  orbit   by  means of a 

parabolic  dish  antenna,  the  user  might  wish to downgrade  the  importance of roll and  gimbal  angles 

while  emphasizing  that of the  yaw  angle .  

Y 

A detailed  derivation of the  residual  magnetic  disturbance  torque  model  and  the  associated  deriva- 

tion of the  sun  angle,   solar  panel  reference  angle,   umbra  half   angle,   and  umbra-associated  Fourier 

coeff ic ients  are presented  in  Appendix C.  In  addition, a numerical   exampre  will   be  presented  in  Chap- 

t.er 8 for the  purpose of clarification. 

6.4 Formulation of the Weighted Performance  Function 

The  response  function R was defined  by  Equation (6.2). 

where  @2(const) is the  mean  square roll angle  resulting  from  the  composite  constant  components  of  the  disturb- 

ance  torques,  and  the  other  mean square factors  are  analogously defined. C+, C+ ,  and C are  weighting  factors 

assigned to  each  of  the  three  components  of R .  
Y 

The six required  transfer  functions  were  defined by Equation (6.1) 3s 
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But  the  equations have been  normalized to orbit  rate so that  for w = no, wl= 1;  for w = 2Q0, w1 = 2; and so on. 

For the class of  spacecraft  without  driven  solar  panels, it  is shown in Appendix C,  Equation (C.l) that  

T ~ ,  = - me [(mZoCu) t ( 2 m , , o ~ u ) ~ ~ o t  
3 1 

'0 

and 

where m x O ,  m y O .  and mZ0 are  the  components of the  spacecraft   magnetic moment vector.  

Substituting Td [Equations (C.l)] and  the  transfer  functions  [Equations  (6.1)]  into R results in the  following 

expression: 

03 

It  can  be  demonstrated  that  the  mean  square  error  function R = C:/4 + 1/2 C i  
t I  = 1 

where 

C,, = d a i  + b i  , 

co = a 0 / 2 ,  

a 0 / 2  = amplitude  of  constant  component, 

an = amplitude  of  cosine  component  of  rlth  harmonic, 

and 

b,, = amplitude  of  sine  component  of  nth  harmonic. 
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To maximize  out  the  orientation  of  the  spacecraft  magnetic  moment as discussed  earlier,  it  was found  con- 

venient to  define the spacecraft  magnetic moment mo in terms of the spherical  coordinates shown in 

Figure 6 .1 ,  where mxo = moStCr,  my0 = moSgSr, m z o =  moC.$, and mo = Imo I .  

4 
Y 

x O  
/ 

Figure 6.1-Spacecraft magnetic moment in  spherical  coordinates. 

For ease  of  manipulation, it was convenient  to  rewrite  the  response  equation as 

where 

and 

I f  substitutions are made for n z s 0 ,  m-,,o, and m z O  in the  expanded  expression  for R ,  R is differentiated  with 

respect to ,$ and 7, and  the  resulting  expressions  are  set  equal to zero,  then 

131 



Three  possible  maxima  result  from  these  expressions: 

(1) t = 90”, T = 90” 

( 2 )  t = 0”, T = 90” 

(3) Let T = Oo, 

( -A + B ) C [ S t  + [ C 2 t  - S 2 t 1 ,  = 0 ,  

1 c 
2 2 

C 

(-A + B )  - s 2 t  + “ c 2 t  = 0 ,  

C 
A - E  tan 2 t  = -~ 

R = R evaluated  at t =-tan-’ 1 
2 

(4)  Let C T  = 
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The  only  valid  solution  for  Case 4 is the  solution  already  covered  by  Case 1. 

For a given set of parameters  that  define A .  B,  C,  and D,  the  result ing R's must be checked to 

establish  which of t he   t h ree   has   t he  maximum value.  In  this  manner,  the  user  need not concern  himself 

with  the  location of the  spacecraft  magnetic  dipole.  Furthermore,  he  must  only  estimate  its  magnitude 

if he is interested  in  relating  his  normalized  response  values to actual  steady  angular  errors. 

Having  maximized  out  the  location of the  spacecraft  magnetic  dipole,  the  user  need  only  put  into 

the  optimization  computer  program  the  array of possible  system  parameters,   the  proposed  orbit   inclina- 

tion  angle,  the  weighting  factor  values  for  each of the  three  components of the  steady-state  response 

function R ,  and  the  value  chosen for T m ,  the maximum system  settling  time.  The  computer  program 

then selects the   bes t   s e t  of parameters  commensurate  with  the  factor of merit d i scussed  earlier. 

Of course ,  if a preferred  orientation of spacecraft  magnetic moment happens to ex i s t  for a particu- 

lar problem,  the  potential  user  can  override  this  maximization  routine by actually  defining 5 and r .  

For spacecraft  with  driven solar panels,  the  procedure of choosing a bes t  set of parameters  makes 

use  of superposit ion.   The  magnetic  disturbance  torques  due  to  the  spacecraft   alone  must  be  summed  with 

those  due  to  the  incidence  of solar energy on the  rotating  solar  panels  before  the  mean  square  error  function R 

can  formed.  The  solar  panel  associated  torques  are  expressed as Fourier  series.  

For practical  systems  with  which  the  potential user would be concerned,  the six response  functions fall off 

rapidly  above w, = 2. With this in mind,  the  only  Fourier  expansion  terms  that  are  considered  to be important 

are  those  at w,  = 0 (const), w1 = 1 (ao), and w 1  = 2 (2Q0). 

The  total  steady-state  response  function  for  this  more  complex  problem  can  be  formed as shown in the 

following  development. 

Let 

A ,  = - (rn,CtCo) , 
r i  

and 

A ,  = - ( ~ ~ , s E s T s ~ )  , 
r i .  

B ,  = - (- rn,SECrCo) , 
'30 

r i  
B ,  = - (- rn,S&rSa) , me 
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where 

m = S.!$rmo, 

m = SgSrmO, 

X 0  

y o  

and 

m = C.$mo. 
Z O  

Let 

and 

where 

Tdz = Bo + BlCi20t + T f z p  

Tdx = total x component of magnetic  torque, 

Td, = total z component of magnetic  torque, 

and Tfxp and T f z p  represent  Fourier  expansions  and  are  defined by Equations (C.12) and (C.13) in  Appendix C. 

Then, 

where 

G2(const) = [(Ao + % ) R l o  + (Bo + % ) R 2 0 ]  ’, 
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The terms a i j  and b I j ,  for i = 0, 1, 2; I = 1. 2; and j = x, z, are  defined in Equation (C.11). 

The complexity of the  resulting  equation makes it  impractical  to maximize  out the  location of the 

spacecraft  residual  magnetic moment analytically for this more general class of spacecraft. 

In addition  to  being  dependent upon  and r ,  the angles  associated with the  orientation of the 

spacecraft magnetic moment, the  expression for R is  dependent upon X and E ,  two of the  orbital  para- 

meters  defined in Appendix C and  shown in Figures C . l  andC.2. The  angle E defines  the  position of 

the sun within  the ecliptic  plane, and X defines the angle  between  the  ascending node and the  vernal 

equinox. 

These  angles might be established as a  result of given  mission  requirements in  which case the 

user would simply put  them into the optimization program along with the  array of possible  system  para- 

meters,  the  proposed  orbit  plane  angle of inclination,  the weighting factors for each of the three com- 

ponents of R ,  and the  value  chosen for T , .  A search routine was incorporated  into  the program that 

establishes the  worst-case  orientation of the spacecraft moment,  and  both 4 and T were eliminated from 

the R equation. 

Although it  is conceivable  that both t and h would be defined by mission  requirements and the pro- 

jected time of launch,  these  quantities,  except under very special  circumstances, vary  with time.  The 

angle E increases  at  the  rate of 1°/day, so that  unless  the proposed  lifetime of the  spacecraft i s  very 

short, E must  not be considered  constant. In addition,  except for purely polar or purely  equatorial or- 

bits, the  orbit  plane wil l  precess  at some finite  rate and h will  increase or decrease  accordingly. For 

these  reasons, an alternate  search routine  has  been  incorporated  into the optimization program. This 

routine  maximizes R as  a function of 5, T, 6, and X simultaneously. In this manner it is possible for 
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the  user to consider the  worst-case  set of conditions  that might result throughout the entire  lifetime of 

the spacecraft. Any of these  angles can be removed  from this four-dimensional search routine by sim- 

ply defining it  equal  to some constant value. 

I Admittedly, the four-dimensional search routine is  somewhat time consuming even on a large  digi- 

tal computer, but this is understandable when the complexity of the problem is  considered. If the  user 

wishes  to make use of the fu l l  maximization search  routine,  it is ilecessary  that  the number  of  param- 

eter sets  to he surveyed be limited to a few thousand so  computer run time can be kept below 30 min-  

utes. On the other hand, hundreds of thousands of parameter sets can be  examined in  an equivalent 

computer  run  time if the four-dimensional search  can be deleted  entirely. If a spacecraft without 

driven solar pankls were to be considered,  such would  be the case. 

If the user felt  too  restricted  because of the time limitations imposed  by the four-dimensional 

search, the problem could be  broken into two parts. A coarse parameter array could first be considered, 

and then a fine  search about the  initial optimum chosen could be  performed. 

A s  in  the case of the  spacecraft  alone, the result of the optimization computer survey i s  the  best 

set of system  parameters commensurate with the factor of merit defined in Section (6.3).  The  set of 

parameters that minimizes R does so for the  worst-case orientation of the spacecraft moment a s  well 

a s  simultaneously for the  worst-case combination of E and A at  the option of the  user. 

6.5 Digital Computer Optimization Program 

The program listing  appears in  Appendix D and was written to accept an array of input parameters 

and to survey and choose  the  best  set. 

These parameters include thenormalized  roll  inertia a ,  the normalized pitch inertia p (note that 

normalization is with respect  to yaw inertia), the  angle of gimbal axis with respect to spacecraft  roll 

axis p ,  the pikh-momentum bias H,, the gimbal  damping Bg, the gimbal spring constant k g  , the 

weighting factor for  mean square  roll error C+, the weighting factor for  mean square yaw error C 

the weighting factor for  mean square gimbal error c and the maximum allowable settling time Tm. 
$’ 

Y ’  
The program be7ins by making use of the stability  criterion  established in Chapter 4. Any param- 

eter Set that would cause an inshbility in a linear  Sense is detected and eliminated in this manner. 

Next, the program eliminates the spherical  coordinates and r associated with the  orientation of the 

Spacecraft magnetic moment, analytically for the spacecraft alone and by means of a numerical search 

for the spacecraft with driven solar  panels. In the more complex case,  the  spacecraft with driven solar 
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panels, the additional  orbit-associated angular parameters E and X may be eliminated at  the  user’s op- 

tion by means of an alternate numerical search routine. The maximization routines  associated with 

any of the  angles 6, r ,  c .  or X can be bypassed simply by defining the  angle in question. 

Each of six transfer  functions are evaluated at the frequencies of interest.  The  response is prop- 

erly weighted by applying the appropriate input torques to each transfer function at  each frequency con- 

sidered, and the R function is  formed. 

The characteristic polynomial i s  formed  and factored, and the dominant  complex pair is  singled 

out  by the computer. The real part of this complex  root is examined and  compared to 1/Tm. Cases 

whose real part is  less than 1/T, are  discarded;  those with real parts  greater  than 1/T, are  stored  at 

this point  for  further consideration 

For the optimum chosen,  the normal  printout associated with this program includes  ths parameter 

set  itself, R ,  the real part of the dominant  complex pair, the damped natural frequency of the  system, 

the components of the mean square error  from  which R was  composed, and the worst-case  angles 5, r .  

E ,  and X when appropriate. 

If the number of parameter sets  is not prohibitively large, all or some of these  quantities may be 

printed out for each of the parameter sets considered. In this manner tradeoffs between the conven- 

ience of achieving a particular parameter set and the poorer  performance obtained for a closely  associ- 

ated parameter set that is  more easily  available might  be  made. Alternately.  a parameter set that 

corresponds to a more heavily damped system at the  expense of a slightly larger weighted mean 

square error  might be chosen. 
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CHAPTER 7 

SOLAR PANELS AND  ASSOCIATED SPACECRAFT  STABILITY 

7. I General Discussion 

It has  been  pointed out in earlier discussions  that the actively controlled  pitch  loop  affords the 

spacecraft the ability to  accomodate  pitch  axis momentum disturbances.  The most severe of these dis- 

turbances would probably be the result of a driven solar panel  assembly. 

The  consideration of driven  solar panels with regard to  the residual magnetic disturbance  torques, 

however, brought to  light an area that had been  ignored until now. If the treatment of the  driven solar 

panel  assembly is to be complete,  the  effect on vehicle  stability of the  variation in spacecraft  inertia 

caused by the rotation of t h i s  assembly at orbit rate must  be considered. 

If the performance of the  total  system is to be acceptable,  these periodic variations must have  a 

negligible  effect upon the system.  This  chapter, however, deals only with the  effect upon system 

stability of the time variation of inertias.  The method of analysis  is  identical to that in Chapter 5 ,  

and for this  reason, the discussion will be kept brief. 

7.2 Equations of Motion With Inertia  Variation 

For the purpose of this  discussion, it is assumed  that  the  spacecraft is under perfect  control and 

that the solar  panel  assembly  rotates  at  exactly orbit  rate. 

The  panel  assembly  coordinates and the  coordinate  transformation matrix from panel  assembly  to 

spacecraft  coordinates are  defined in Appendix C. 

From Equation  (C.2), 

A,, = 1 - se,cP 

0 

sepsp ce, 

where A,, is the  transformation matrix from solar  panel  assembly  coordinates to  spacecraft coordi- 

nates.  The  angles 8, and ,u are defined in Appendix C. 
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Qp0 is defined a s  the  inertia tensor of the solar  panel  assembly  in  spacecraft  coordinates. 

where a, is the  panel  assembly  inertia  tensor in panel  assembly  coordinates, and AFo is the transpose 

of the  coordinate  transformation matrix A p o .  

The computation of the solar  panel  assembly  inertia  tensor in panel  assembly  coordinates is sum- 

marized in  the following calculations.  Let % I x p  be the inertia of each  panel about the  panel  face 

normal  through the  panel  center of gravity; 1/21,,, the inertia of each  panel about the  panel  shaft axis 

through the  panel  center of gravity; % I z p ,  the inertia of each  panel about the axis  parallel  to the  panel 

hinge line through the panel  center of gravity; W m ,  the  mass of each  panel; a, the distance from space- 

craft  center of gravity  to either hinge line; and b ,  the distance from each hinge line to  each  panel  cen- 

ter of gravity.  Figure  C.3a  shows a and b .  

Assume that each  solar  panel is flat so that I , ,  = I , ,  + I z p  and that only the panels  themselves 

have mass. 

The  inertia  tensor for each  panel  referenced  to its own center of gravity may be written as  

When the  tensor associated with each  panel is  translated  to the spacecraft center of gravity and the 

resulting two tensors are summed, the resulting  inertia  tensor  can be written i n  panel  assembly 

coordinates. 
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. .  
I 

This   tensor   was  next   t ransformed to spacecraft  coordinates, and the  result  is expressed   in   the  

notation 

where 

and 

I,, (33) = [ I , ,  - lZ, s2p - m (b  ~ p ) ~ ]  s2e, + m [ (a  + b t (b sp)21 + I ~ , .  
where 

6, = epo + sot, 

s2e, =[I - c cze,)] 1 2 ,  

c2e, $1 t c w, ) ]  12 .  

and 

ce, se, = s (2eP)/2. 

The   sys tem  equat ions  of motion  were  developed  in  Chapter  2,  and  the  gimbal,  roll,  and  yaw  equa- 

t ions  are  restated  here.  

fi2x 4- w 2 y  H 2 ,  - 0 2 2  H 2 y  = T 2 1 x  + T 2 2 x  + T 2 3 x  
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H i ~ + ~ l y ~ l z - ~ l z ~ l y = ~ l l x + ~ 1 2 x + ~ 1 3 ~ +  - T 2 4 y  ( [ - ' : 4 ] }  X COIl lpOl l€!I l t  

The  gimbal equation i s  unaltered by the solar panel assembly inertia terms; however, the  terms 

in the  body 1 x and z axes equations are modified to 

H I x  = [ I , +  I , ,  (1111 & I x  + [ I , ,  (1211 &Iy + [Ip, (1311 &Iz 
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where 

I l’ = 11 + Ipo(1l) 

1;  = I ,  + 1,,(22) 

I $  = 1 ,  + 1,,(33) 

The  practical  usefulness of this system  requires  that  the  active  pitch  loop be tightly  controlled so 

that it may accurately be assumed  that 9 = 6 = 0 = 0 in the  roll and  yaw equations.  This  assumption 

allows  the T, , ,  T and T l z  equations  to remain decoupled from the T ly ,  T, , ,  and the error equa- 

tions. After substitution, 

T 2 x :  

- H b S P d  - C P H b 4  + Bgf - c P a # b +  + ff$Pao$ + ( k g  - H b a o ) y  = 0 (7.5) 



The  resulting set of coupled  linear equations with periodic coefficients is nonhomogeneous. How- 

ever, a s  with  any set of linear  equations,  superposition  applies and the equation  set  can be  made  homo- 

geneous for the purpose of investigating  system  stability. The details  associated with applying the 

Floquet  criterion to this set of equations follow exactly  aspresented i n  Chapter 5. 

7.3 Floquet Problem 

The  algebraic manipulation of Equations (7.5), (7.6). and (7.7) that  results in  the system  state 

matrix A ,  where X = AX,  is detailed in  Appendix E.  The  elementsof  this  state matrix are 

a(l1) = 0, 

a(12) = 1, 

a(13) = 0, 

a(14) = 0, 

a(l5) = 0, 

+ lP0(13)q + - S C ~ C I ~ H ~ ] ,  
B g  

+ Ipo(13)r - B S H$pfl0]. 
g 
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and 

where 

433)  = (- f )  , 1 

g 

a(51) = 0 , 

a(52) = 0 , 

453)  = 0 , 

a(54) = 1 , 

a(55) = 0 , 
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and 

The  system  state vector is defined as 

X =  
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At this point, it is possible to substitute the elements of this  piecewise  constantA matrix into 

the computer  program listed in  Appendix B. A potential user thus  could  solve for the set of state 

transition matrix eigenvalues  associated with any parameter set he  might choose, OF he could do  an 

entire  Floquet  study  exactly as was performed in Chapter 5. Since no  new technology would  be gained 

by detailing this problem as  was done in the  case of the variational pitch-momentum bias,  this partic- 

ular  program will be used only to verify those  results  obtained from the  optimization program discussed 

in Chapter 6. That is, the  Floquet  criterion  will be applied  to  the  equation set that includes the time- 

varying inertias to verify for a given set or sets of system  parameters, whether or  not system  stability 

is appreciably impaired by the  inclusion of variational  inertia terms associated with a particular 

problem  and a particular solar  panel  configuration. 
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CHAPTER 8 

VALIDATION OF THE  USE OF A  LINEARIZED  TIME-INVARIANT  EQUATION SET 

8. I General  Discussion 

The  complete  equation set  that mathematically  models  the gimbaled-reaction-wheel-scanner space- 

craft is very nonlinear. Moreover, the  equation  set  is  complicated by the  inclusion of large  variational 

momentum bias terms  that may result from a  pitch  axis  disturbance torque and the  inclusion of the  time- 

dependent inertia terms  that would result if a driven  solar  panel were  part of the  spacecraft  configura- 

tion. Lyapunov methods  are  sometimes  used lo  study the  stability of both nonlinear and time-varying 

systems. However, it i s  highly  unlikely  that these methods would yield any useful information if they 

were applied  to  a  system as  complex as  the one  under study. Clearly,  to  establish  generalized  sta- 

bility  thresholds  and/or to  find a meaningful performance or factor-of-merit  criterion, it was necessary 

to work  with a  linearized  time-invariant  equation set. Accordingly,  a  user must justify  the  use of this 

fabricated  equation  set by validating  the  results  obtained. 

The knowledge of stability  thresholds  alone is  of limited  usefulness, even when these  thresholds 

are known  in general. More important is  the  ability  to  choose, from an array of available  parameters, 

those  parameter sets that not only cause a particular  spacecraft  configuration to be stable but also 

allow  the spacecraft  to meet certain  mission  requirements in  a  favorable manner. For this  reason, in 

the  final  analysis, the number of parameter sets that  a  user must numerically validate will be limited. 

Accordingly, he should not find the  given  numerical methods too restrictive. 

The  optimization  routine of Chapter 6 singles out parameter sets in their  normalized form. At 

this  point,  the user must scale his problem by assigning numerical values  to  the  spacecraft and solar 

panel  magnetic moments. The  particular  values must be chosen  to make the roll, yaw, and gimbal 

components of r m s  error an acceptable  level. 

8.2 Method of Validation 

When a  linearized set of equations is used  to  determine  general  thresholds of system  stability, 

validating  the  results  is  a  two-sided problem. 
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Certainly  the  linearized  time-invariant  equation set wil l  adequately  describe  the  system 

within some limited neighborhood of X,,, the  system  equilibrium state. When trying  to  determine 

whether the neighborhood is sufficiently  large to be of practical  .interest,  the  general  analytic  sta- 

bility problem  must be reduced to one that  can be handled by numerical  methods. A useful method of 

validation was comparing the  output of  two digital computer simulations by means of overlay. One 

simulation  contained  the  linearized  equation set;  the  other,  the nonlinear  equation set. By choosing 

initial  condition sets arbitrarily  large in magnitude,  the size of the neighborhood within which the 

linearized  equation  set is valid  could be approximated. Certainly,  this neighborhood must be well in  

excess of the r m s  error components associated with the  particular  parameter  set under investigation 

if the  equation  set is to be at  all  valid. 

Alternately,  the  other  part of the problem concerns  itself with  what happens  once we cross  into 

the  so-called  unstable  region.  Suppose, for example,  that  the  small  angle  mathematical  instability 

manifests  itself in a very small  amplitude limit cycle about X,. Moreover, suppose  that  aside from 

this limit cycle,  the  system is well damped  and well  behaved. Although this parameter set would 

have been  ruled out  by the  linearized  stability  study,  it might have produced a  perfectly  acceptable 

systsm. 

However, because of the method of presentation  discussed in  Chapter 4, it was possible not only 

to  establish the  small  angle  stability  thresholds, but also  to  determine the type of instability encoun- 

tered  once  a  threshold  was  crossed. The type of instability i n  all but one particular case was found 

to be a  loss in null reference, which would clearly be unacceptable. The particular case excluded 

above  occurs when p = 1 within an otherwise  stable  region.  The type of instability here would  be  an 

undamped oscillation; however,  the  condition  described results from the  absence of roll  axis  gravity- 

gradient  restoring  torque.  This case is also  unacceptable  because  the  instability would be manifested 

in an  uncontrolled  coning of the  roll-yaw  plane  about  the  pitch axis. 

Accordingly, it is only necessary  to  consider the stability of those parameter sets that lie within 

the  linearly  predicted  stable  regions. 

Once it  has been shown that  the  system is  accurately  described by the  linearized  equation set 

within  the neighborhood of interest,  it  follows  that  the  response and performance information  derived 

from these  equations  are valid as  well.  The  validity of neglecting  the  time-varying  coefficients must 

be considered  next. 

150 



Because  both  system  stability  and  harmonic  response  are  directly  related to the  set of system 

eigenvalues,  the  desired  validation  would  be  accomplished if it can  be  shown  that  the effect of the 

time-varying  terms  upon  these  eigenvalues is small. 

The  most complex  situation is spacecraft  with  driven solar panels.  A s  a result  of the  perform- 

ance  s tudy  detai led  in   Chapter  6 and  the  scaling  procedure  discussed  in  the  introduction of this  chap- 

ter ,  all the  necessary  information is available to completely  define  the  system, its magnetic  disturb- 

ance  parameters,   and its associated  orbital   parameters.  If this  information,  along  with  information 

describing  the  solar  panel  assembly, is put  into  the  computer  program  discussed  in  Chapter 7, the Flo- 

quet  characterist ic  factors  result .  From these,   one  can  f ind  the  associated  system  character is t ic   expo-  

nents  for  the  time-varying  inertia  problem,  and  the  exponents may be  directly  compared  with  the un- 

perturbed  system  eigenvalues. If the  two  sets  of system  roots  compare  favorably, it can  be  assumed 

that  the  validity of the  results  was  not  impaired  by  neglecting  the  time-varying solar panel  inertia 

components. 

The  val idi ty  of neglecting  the  variational  component of the  pitch-momentum b ia s  term  should  be 

the  next  consideration.  The  main  body  pitch  equation is 

It is assumed  that   the  pitch  axis  is   under  perfect   control for the  worst-case  variational  amplitude 

to  be  considered. 

H, = T d y  = pitch  component of magnetic  disturbance  due to both  the  spacecraft  alone  and  the 

solar  panel  assembly. 

Substituting  the  required  information  into  the  computer  program  described  in  Chapter 5 resu l t s   in  

the  Floquet  characterist ic  factors  associated  with  this  problem. A s  in  the  previous case, the  system 

characteristic  exponents  are  evaluated  and  compared  with  the  eigenvalues of the  unperturbed  system. 

If each  of the  three  proposed  comparisons  produce  favorable  results,   validation  has  been com- 

pleted.  However, if the  neighborhood  within  which  the  linearized  equation set was  found to be valid 

was  not  sufficiently  large,  or if ei ther set of the  Floquet-derived  system  eigenvalues  showed  an  appre- 

ciable change from those  of the  unperturbed  system,  further  consideration is necessary.  For example, 

the  user  might  require  that  the  chosen  system or sys tems  be  more tightly  damped  by  redoing  the  search 

with a smaller  value of T,. If a favorable  validation is still not  possible,   al tering  the  solar  panel 
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assembly configuration or raising  the nominal value of H, might be tried when either of the  respective 

Floquet  validations  appears  to  be  the problem area. 

If these remedies fail, the user probably  must resort to a computer simulation of the fu l l  set of 

nonlinear equations, a clearly undesirable situation. 

Two numerical examples are  presented to  clarify the discussion of this  section as well a s  topics 

discussed throughout the  text of this  dissertation. 

8.3  Numerical Examples 

The design requirement for a spacecraft without driven solar panels i’S to  choose a set of system 

parameters for a gimbaled-reaction-wheel-scanner attitude-control system  that would  minimize the 

steady-state  spacecraft  response  to  the  worst-case magnetic disturbance torques that might act upon 

the vehicle.  Transient  settling time* must be constrained  to  six  orbits or less,  and the parameters 

must be chosen from values currently available using present  technology. A tabulation of parameters 

to be considered appears in Table 8.1. It i s  assumed that the residual  spacecraft magnetic moment is 

3.96 X lo3 pole-cm. This corresponds to  2.5 X lo3 pole-cm on each of the three spacecraft  axes.  The 

mission requires an orbit plane inclination angle of 30°. 

The parameter array of Table  8.1  is  inserted  into  the computer program listed in  Appendix D.  

The  total number of combinations of parameter sets considered is: (31 ) (6A) (3ratio)  (5 ) (12H,) 

(5k ) ( 3 B  ) = 45600.  The output quantities chosen to be printed for each value of ( I y  - Iz) considered 

were the parameter set  itself, the square root of the weighted mean square error function R, the real 

and  imaginary parts of the least damped system root  normalized  by s1, = radlsec, the r m s  roll, 

yaw, and  gimbal attitude  errors, and the worst-case  spherical coordinate angles of the  spacecraft mag-  

netic moment. These  results are tabulated in  Table  8.2, and the computer-chosen optimum is marked. 

The computer  time required on  an IBM 360-91 was 124 seconds. 

2 P 

g g 

The optimum parameter set was inserted  into both linear and nonlinear computer simulations, and 

initial conditions were chosen well in  excess of the computer-found steady-state rms errors.  The  re- 

sulting time responses  are shown  in Figure 8.1. computation time  for each simulation was 75 seconds. 

Listings of these programs appear in Appendices  F and C, respectively. 

*Transient  sett l ing time i s  T, = 1/(2?70) (Reference ll), where D is the  real  part of the l ea s t  damped  root  and 
T, is in orbits when (T is normalized by a, = rad/sec.  
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Table  8.1-Parameter array for use in optimization program.* 

1, - 'z 
(slug-ft2) 

A ( 1 )  = 50 

.4 (2) = 100 

4 (3) = 250 

2 (4) - 500 

2 (5) = 1000 

2 (6) = 2000 

- . 

Ratio (1) = 0.75 

Ratio (2) = 1.0 

Ratio (3) = 1.33 

-~ 

8. gimbal 
axis  angle, 
(degrees) 

P ( 1 )  = 0 

8 (2) = 22.5 

p (3) = 45. 

p (4) = 67.5 

p (5) - 90. 

~ - " - 

H,. pitch 
momentum bias 

(It-lb-sec) 
" - 
Hb (1) = -10. 

H ,  (2) = - 5. 

H, (3) = -  2.5 

H, ( 4 ) = -  1. 

H, (5) = -  .5 

H b  (6) = - .1 

t l ,  (7) + .1 

H, ( 8 )  = + .5 

H b  ( 9 )  = + 1. 

Hb (10) = t 2.5 

H, (11) = t 5. 

H b  (12) = +lo.  
~. ". ~ 

k gimbal 
g' . sprlng 
constant 

(It-lblrad) 

Table  8.2-Results of optimization for Example l.* 
.. - 

"1 
" 

1 
2 

3 
4 
5 
6 
.~ .. 

"2 

1 

1 

1 

1 
1 

1 

- 

.~ 

"3 
" 

2 
2 
2 
2 
2 
1 

"4 
. -~ 

5 
4 
3 

3 

2 
3 

"5 
~~ ~. 

1 

3 
3 
3 

3 

3 

~~ .~ 

"6 "7 
~- 

1 1  
1 2  
2 1  
3 1  
3 1  

4 1  

F 
- 

3.726 
1.841 

.807 1 

.4786 

.3095 

.1738 

*Refer to Table 8.1 for actual  parameter  values. 
to = -0.0265 - settling  time of six orbits. 
Soptimum for entire row. 

~ I-~" 

- .036 +-i 1.10 
- ,034 ij 1.36 

16.43 
7.91 
3.63 
2.25 

1.45 
.865 

E # ,  gimbal 
damping 

(It-lb-sec/rad) 
constant 

I I 

,810 90 90 

.75 -84 

.251 90 90 

Finally, the parameter set, the  orbit plane inclination  angle, the magnitude of the spacecraft mag- 

netic moment and its  associated  worst-case  spherical  coordinate  angles were inserted  into  the  varia- 
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Figure  8.1-Time  responses for  optimum  spacecraft for Example 1. I .C. = + = y5 = loo, and a l l  other  system  states  are  initially  zero. 

Angles  are  in  degrees. 



tional momentum bias Floquet program listed in  Appendix B. The  Floquet  eigenvalues  for  the unper- 

turbed and the perturbed system  can  be compared in Table 8.3. Computation time was 5 seconds. 

Table  8.3-Results of variational momentum bias  Floquet  study Example l.* 

Magnetic 
eigenvalues moments 

Floquet 

(103 pole-em) 'j 

-0.5128 f j  .62388 

rnxp = 0. .0441 + j  .00445 
. . .  

\mol = 3.96 - .5128 t j  .6238 

,0441 + j  .00445 

Magnitude 
of eigenvalues 

I 'jl 

0.8076063 
.044384198 
. . .  

.80760601 

.044383999 
. . .  

-0.034008329 

- .49574734 

- .034008387 

- .49574806 
I 

The  mission requirement for a  spacecraft with  two driven solar  panels  is that  each  panel have an 

area of approximately 50 ft2. For this  second  case,  a parameter set must  be chosen  that minimizes the 

steady-state  spacecraft  response  to the worst-case magnetic disturbance torques  that might act upon 

the vehicle  because of the residual  spacecraft moment  and the  magnetic moment due to  the  current 

paths on the faces of the solar  panels.  Transient  settling time  must be less than six orbits.  The set 

of possible  parameters i s  the set shown i n  Table 8.1 except I ,  (l), 1, (21, A (1). A (3), A ( 5 ) ,  p (2). 

p (4). k g  (2), and k g  (4). Also, the expression a = ( l x / l  )p was  replaced by the relationship 

a = ( p  + 125/1,) to  account for the  pitch-roll inertia  differential  resulting from the  large solar  panels 

chosen. It was  assumed for this example that I ,  = I in the absence of the solar  panels. (a = l x / l z ,  

and p = I y / l z . )  The  chosen  residual  spacecraft magnetic moment is 3.96 x lo3 pole-cm, and the mag- 

netic moment due to each'solar  panel  is 2.5 X lo3 pole-em. The  mission  requires an orbit inclination 

angle of 30°, and neither  the location of the sun in the ecliptic  plane nor the location of the ascending 

node  with respect to  the  vernal  equinox is known. 

Y 

Y 

The  abbreviated parameter array is inserted into  the  optimization program,  and the number of param- 

eter sets considered is (II ) ( 3 ~ )  (3p)  (12H ) (3k ) (3B ) = 972. 
2 b g g  

The output quantities printed were the  same as  in the first example considered, with the  addition 

of the  worst-case sun location  angle and angle  between the  ascending node  and the  vernal  equinox. 

The  results of this computer run are  tabulated in  Table 8.4. Computation time was 18 minutes. 
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Table  8.4-Results of optimization for Example 2.* 

'$ 

111 

- 

"4 

2 

1 
1 

- 

- 
.875 

(a ? j  0 ~ ~ ) / ! 2 ~  

0.0354 ? j  1.03 

.0395 tj 1.01 

.0288 ? j  1.03 
~~~ 

*m7 = 3. refer  to Table 8.1 for  dkfinition  of mi 's .  i = 1 ._ . . 7 .  
tu = -0.0265 - settling time of six orbits. 

Soptimum  for  entire row. 

The resulting time responses  associated with the optimum parameter set are shown in  Figure  8.2. 

Next,  the parameter set and the  required  solar  panel  configuration information was  inserted  into 

the  variational  inertia  Floquet program listed in Appendix B. The s u n  angle ,u was spanned from Oo to 

goo to  consider  the  effect of the  worst-case  hinge  angle.  The program was run assuming  each of the 

panels  to be flat  plates of dimensions 10 ft x 5 f t ,  7 ft x 7  ft, or 5  ft x 10 ft. The  Floquet  eigenvalues 

for the  perturbed and unperturbed systems  are shown in Table  8.5. Computation time  was  50 seconds. 

For the  sake of comparison, only the  variational  panel-associated  inertia terms are  considered in 

the  Floquet program. The  spacecraft  inertias must be altered  accordingly  to  account for any panel- 

associated  constant  inertia  terms. 

Finally,  the output data of the  optimization program, the  magnitude of the magnetic moments of 

the  spacecraft and solar  panels, and the  orbit  plane  inclination  angle  are  inserted  into the variational 

momentum bias  Floquet program  and the  resulting  eigenvalue sets are shown  in Table 8.6. Computa- 

tion time was 5 seconds. 

Clearly, for the  examples shown above,  all of the  comparisons were favorable. 
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Table  8.5-Results of variational  inertia  Floquet  study Example 2.* 

Floquet 
eigenvalues 

'i 

-0.909 +-j .0889 
.6027 + j  .0939 

. . .  

- .909 + j  .0881 
.6027 + j .0994 

. . .  

- .909 + j  .0935 
.601 + j  .0610 

. . .  

- .909 + j  .0982 
.5976 ij .0226 

. . .  

Magnitude 
sun angle p In l A i l / d ' 2 , ,  of eigenvalues 

+Worst-case 

l'il (deg) 

0.91350131 - -0.028797652 
.60997733 - .15735127 
. . .  . . .  

.91341377 
0 - .15687457 .61089151 

- .028828155 

. . .  . . .  

.91393573 
90 - .16019717 .60454804 

- .028646314 

. . .  . . .  

.91452856 
90 - .16364192 .59804089 

- .028439907 

. . .  . . .  
* m l = 6 , m  2 -  - 1 . m a = 1 , m , = 1 . m S = 3 . m G = 3 . a n d m , = 3 .  

+Largest deviation of In \Ai \ /rQo from no-panel case. 

Panel 
configuration 

no panels 

a 10' 

Shaft 

10' 

t Hinge Line 

Table  8.6-Results of variational momentum bias Floquet  study  Example 2.* 

Magnetic 
moments 

(lo3 pole-em) 

lmOl = 0. 

mXp = 0. 

/mol = 3.96 

m X p  = 5.0 

Floquet 
eigenvalues 

hi 

0.8167 + j  .16166 

.3445 + j  .1149 
. . .  

.8187 ? j  .16163 

.3544 ij .1152 

. . .  

Magnitude 
of eigenvalues 

I'il 

0.83448030 

.37266113 

-0.028798479 

- .15709961 
. . .  

.83450912 

.37271575 

- .028792983 

- .15707629 

I .  . .  
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APPENDIX A 

DEVELOPMENT  OF  FULLY  EXPANDED EXPRESSIONS 

The  following section  includes the expansion details  of the development presented in Chapter 2. 

O2 = A2,Z1 t 

O3 = A31Z31 A321]t[] 

r -  

12)hIy t a21(13)&12 t i; 



- cj, = A3,Z1 t A,,&, t 
- 
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Hz = A2,H3 + @,O, 

H, = A23H3 + A23H3 + Q2&, 
- 

H, = Q3W3 
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The  left-hand  side of Equations  (2.4) is treated  in  the  following  development. To simplify  the  nota- 

tion  used  throughout  this  development,  let 

T3Y = H3y 03zH3x - 03xH3z 

The  rotor is assumed  to  be  symmetric. T,, and T,, are degenerate  equations.  
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T2y and T,, are  degenerate  equations. However, they  are necessary  to  evaluate  the  constraint  torques 

acting on body 1. 
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T,, = H,, t o ly  H l z  - U l z H l y  

T l z  = Hlz WlxHly - 9 y H l x  

The  r ight-hand  side of Equations (2.4) is treated  in  the  following  development. For th is   phase  of 

the  study  i t  is assumed  that   the  disturbance  torques T, equal  zero. 

T,, = 0 

T,, = 0 

T,, = 0 
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This assumption has  been made because disturbance torque inputs cannot affect the stability of the 

linearized model  that shall  be considered. 

The remaining  torque equation i s  

The gravity-gradient torques for each of the three bodies are 

where 

where 

I ,  = 

and 
r 1 
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and 

T,,  = 3flE 

where 

The  only  constraint   torques  that   must be considered  are  those  acting  on  body 1. (See  page 24.) 

but 

where 

and 

and 

T24y = T2y (RHS)- T2,y Ho 
T , , ,  = T, ,  gravity-gradient  torque 

T,,, = T,, control  torque, 

where T2,(RHS) and T,,(RHS) appears  on  page A-5, T, , ,  and T2 lz appear  on  page A-7,  and T2,, and 

T22z appear  on  page 23. 
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Finally, 

T,, = T,= k T p l d s  t 8, - T 2 i  - (Hw- Hb)CJ -HwB, [See Equation (2.3).1 
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APPENDIX 6 

LISTING  OF  FLOQUET COMPUTER PROGRAMS FOR  VARIATIONAL 
PITCH-MOMENTUM BIAS AND VARIATIONAL  INERTIA 

The  f i rs t   l i s t ing  presented is the  main  program  used  for  both  the  Floquet  search  detailed  in  Chap- 

ter  5 and  the  validation  runs  associated  with  the  variational  pitch-momentum bias and  pitch  disturb- 

ance  torque  runs  referenced  in  Chapter 8. Appropriate  changes  noted  within  this  program  are  used to 

specify  which of the two  type of runs is desired.  The two  applicable  subroutines are listed  following 

the  main  program. 

The  next  l ist ing  includes  both  the  main program  and  subroutine  for  use  in  the  validation of the 

variational  inertia  computer  runs  referenced  in  Chapter 8. 

The   user  is free to insert   into  any of these  programs  any  parameter set of his  choosing.  The  re- 

quired  information  will  be  available from the  computer  output of the  optimization  program  detailed in 

Chapter 6.  In addition,  the  user is free to insert   solar  panel  configurations of his  choosing  into  the 

variational  inertia  program. 

Three  subroutines  are  required  for  the  execution of these  programs.  They  are  QREIG,  QRT,  and 

HESSEN.  These  are  available  through  the SHARE Program  Catalog, SDA 3006-01, August 1964. Their 

purpose is to solve  for  eigenvalues  by  the QR transform.  The  author of t he  program is F. P. Emad. 
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D I M E N S I O N   Q M A T  (10~10) TRUUTR ( 100) tNcOOT I ( 1 0 0 )  
D I M E N S I U N   O Q ( 1 0 ~ 5 9 5 )  

C T H E   C A R D S   W I T H ( * )   W E R E  USkO I N  T H t   F L U O l J t T   S E A R C H   D k l A I L E U  I N  C H A P T E K  5 9  

C W H I L E   T H t   C A R D   W I T H ( * * * )  W E R E   U S E D  F1)K T H t   V A L I U A l I U N   I I U M t N T U M   B I A S   R U N S .  
WK I T €  ( 6  95000 1 
W K 1 T E ( 6 ~ 5 0 0 1 )  
W R I T E ( 6 r 5 0 0 2 )  
W R I T t ( 6 ~ 5 0 0 3 )  
W R I T E ( 6 9 5 0 0 4 )  

5000 F O R M A T ( '  TWO S E T S  O f  E I G k N V A L U E S   K t S U L T  F U R  t A C H   C A S E   C U N S I U E K E D T P  
l R O B A B A l 3 1 - Y   O N E   W H I C H  I S  USkFIJL AN0 U N t '  ) 

5001 f O 2 M A T ( '   W H I C H   I S   N O T .  I N  T H E   F I R S T  S k T t  T H k   S Y S T t M   M A T K I X   I S   N U K M  
1 A L  I Z E U  B Y  2 T U   T H E  M P Q ( C I P 6 ) = 3 )  , A N D  II\r I )  

5002 F O R M A T ( '   T H E   S E C O N D ~ M P O = ~ . A L S U T  T H t  E X P U N t N T I A L   S E K I E S   t X P A N S I O N  I 
1s C A R R I E D   O U T   T O   N S T U P = 5 O  I N  ( 1 )  A N D  I )  

l N E E D  Ht F O R  A P A R T I C U L A R   P K O B L E M '  1 
5 0 0 3  F O R M A T ( '   N S T O P = 1 0 0   T E R M S  I N  ( 2 ) . T H E S €   G U N S T A N T S   C A N  dE A L T E K E L ,  I F  

5 0 0 4   F O R M A T ( '   C O M P U T t D   U N O E K F L U W S   A R E   t X P E C T t D  ' I  
L ) M E G A = l  .D-3 
DO 32 N C A S E = l r 4  

C D O  3 2  N C A S E = 1 9 1  
C A S T = A R B I T R A R Y   D I S T U R B A N C E   T O R Q U E   A M P L I T U D E  I N  I-T L B   S t C  
C W I N = A R B I T R A K Y   D I S T U R B A N C E   T O R Q U E   f R E 6 )  I N  R A D / S E C .  

C W = W I N  
DO 6 5 5 5  M l l Q O = l ~ l  

W=OMEGA 
DO 6 8 8 8  M Z ( j = 1 9  1 

C A = A S T  
N S T O P = 5 0  
MPO= 3 
DO 39 I _ S T P = l r 2  

9500 C O N T I N U E  
f M P Q = 2 . D 0 * * M P Q  

I N T R V = 8  
f I N T V = I N T R V  
I M V -   T =   I N T R V - 1  
D T = 2 . 0 0 * 3 . 1 4 1 5 9 2 U O / ( f I N T V * W ~ f M P ~ )  
A N O -   E =  .2DO 
f S T O P = N S T O P + l  
N= 5 
DO 11 M 1 = 1 9 I N T R V  

C I N T R V = 4 ( I F   D I S T U R B A N C E  I S  Of A S I N G L E   f R E Q I  

D O  1 0  I P = l  91'4 
D O  10 J P = l ~ l \ r  
P (  I P T J P ) = O . D O  

10 Q(IPTJP)=O.DO 
DO 1 2  I P = ~ T N  

1 2  P ( I P T I P ) = 1 . ~ 0  
5 C O N T I N U t  

C H A =  W*A 
C CAI,', QCAl-C ( O , A N b L t r N C A S t t A t W A )  

CA1-I- Q C A L C  ( Q , A I V ( ; L ~ t N C A s t T x M o t X M X ~ )  
DO 30 N D T l = l t 5  
DO 30  N D T 2 = 1 , 5  
Q ( N D T L ~ N D T ~ ) = Q ( N D T ~ T N ~ ~ ~ ) ~ ~ D I  

3 0  C O N T I N U E  
DU 14 1 _ 5 = l * N  
DO 14 L 6 = l r N  
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LOO0 FORMA.T('  HAG. OF LAHDA  IRE+IM)LAMDA(FLOQUET  EGNVLUES)   (RE+T* IM) r  
~ L N ( L A M D A ) / T T T * I M  I N  DEGREES' )  

W R I T E ( 6 r 1 0 0 0 )  
9001 FORMAT(5E16 .8 )  

W R I T E ( 6 q 9 0 0 1 )  X M A G ~ R O O T R ( N M A G ) T R O O T I ~ N M A G )  TXI-MD L T X L M D  2 
9999 CONTINUE 

C9000 FORMAT('   DISTURBANCE  DISTURBANCE  CASE'  
9000 FORMAT( ' V E H I C L E  MAG MOM. MAG MOM OF PANELS  CASE'  1 

w R I T E ( 6 ~ 9 0 0 0 )  
C 9 5 0 5  FORMAT ( ' AMPL ITUDE  FREQUENCY ' 1  

9 5 0 5  FORMAT( '   FT.   LB. /GAUSS  FT.   LR. /GAUSS ' 1  
W R I T E ( 6 r 9 5 0 5 )  

L . 1 0 1   F O R M A T ( 2 0 1 8 . 6 ~ 1 3 )  
C W R I T t ( 6 r  1101 I A T W P N C A S E  

W R I T E ( ~ T ~ ~ ~ ~ ) X M O T X M X P T N C A S ~  
CUNT I NUE 
WR I T E  ( 6  ~ 2 2 2 2  

2 2 2 2  F U R M A T I l H l )  
NSTUP=100  
MPO=8 

3 9  CUhT INUE 

h B 8 8  CON1  INUE 

6 5 5 5  CUNT  INUE 
3 2  CUNT I N l l t  

RETURN 
END 

C AST=AST+. 100 

C WIN= W I N+ .00021)0 
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S U B R O U T I N E  QCAl-C I Q , A N G L ~ r N C A S E , X k O , X M X P )  
I M P L I C I T   R E A L * 8 ( A - H , U - ’ Z )  
D I M E N S I O N   Q ( S v 5 )  

C E A R T H   M A G N € T I C   M O M E N T  I N  GAUSS J-T F T  F T  
X M E = 2 . 8 4 5 0 2 1  

R O = 4 0 4 0 . D 0  

S I G M A = 3 . 1 4 1 5 9 2 D 0 / 6 . U O  
P I = 3 . 1 4 1 5 9 2 0 0  
O M E G A = l . D - 3  

C E A R T H   R A D I U S  F L I J S  U R B I T   A L T I T U D t  I N  N A U T I C A L  M I L F S  

C O R H I T   P L A N E   I N C I - I N A T I O N   A N G L E  I N  R A D I A N S  

GO T O  ( 1 1 2 7 3 1 4 )  r N C A S E  
1 C O N T   J N U E  

C E X A M P L E  1 9 U N P t R T U R B k D  
XMO=O .DO 
XMXP=O.DO 

C P A R A M E T E R   S E T  OF E X h M P l - f  1 
c GAM appears  as p i n  the text.  

A L  F=. 7 5 D O * G A M  

X I Z = l O . D O  

G A M = 2 0 1 0 . 0 0 / 1 U . D O  

H O = - 2  500 

B G = . 7 5 D O  
X K G = . 3 3 D - 2  
B E T A = O . D O  

C W O R S T   C A S E   A N G L E S  
2 = 1 . 5 7 1 D O  
T = 1 . 5 7 1 0 0  
G O   T O  2 0  

2 C O N T I N U E  
C E X A M P L E  1 7 P E R T U R B E D  

X M O = 3 . 9 6 D 0 * 7 . 3 8 0 - 5  
GO T O  2 0  

3 C O N T I N U E  
C E X A M P L E  2 T U N P E R T U R B E D  

XMO=O DO 
X M X P = O * D O  
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C P A R A M E T E R  S E T  OF E X A M P L E  2 
G A M = 2 2 0 0 . D 0 / 2 0 0 . D O  
A L F = 2 3 2 5 . D O / 2 0 0 . D 0  
H O = - l O . D O  
X K G = 1  .D-3 
BETA=O.DO 
BG=.75DO 

C W O R S T   C A S E   A N G I - E S  
1 = 4 . 7 1 D O  
Z = 4 . 7 1 D O  
X L A M = 3 . 6 7 0 0  
t=4.1900 
G O   T O  2 0  

4 C O N T   I N U E  

C E X A M P L E  2 9 P E R T U R B E D  
X M X P = 5 . 0 0 0 * 7 . 3 8 D - 5  
X M O = 3 . 9 6 U 0 * 7 . 3 8 0 - 5  

2 0  C O N T   I N U E  
S H = D S I N f B E T A )  
C b = D C O S ( H € T A )  
c S B = C  B*C 6 
SSB=SB::SH 
SC A M = D S  I N  f XI- A M  
GI- AM=DC O S  f XI- AM 
S E = D S  I N (  E 
C E = D C O S ( E )  
C Z = D C O S f  z 1 
S Z = D S I N ( Z )  
C T = D C O S f   T I  
S S = D S I N ( S I G M A )  
C S = D C O S  f S I G H A  
X K M P = X M E * X M X P / (   ( f K 0 1 6 0 7 6 . U O ) * * 3 ) + 2 . U 0 )  
X K M O = X M E * X M O   / ( ( R 0 * 6 0 7 6 . U 0 ) ; ~ + 3 )  
I F ~ X M X P ) 1 0 0 0 ~ 1 0 0 1 r 1 0 0 0  

1001 C U N T   I N U E  
A l Y = O . D O  
A Z Y = O  00 
B l Y = O . O O  
B 2 Y = O . D 0  
G O   T O  Z O O 0  

1000 C O N T  I N U E  
C23=OCOS(PI*23.5D0/180.~~) 
S 2 3 = D S O K l f l . D O - C 2 3 + C 2 3 1  
S M U = C E * S S * : C I A M - S E * ( C S * S ~ ~ - S S : : : S L A ~ I * C ~ ~  I 
C M U = U S O K T f 1 . 0 0 - S M U * S M U )  
C R O = O S O R T ( 1 . 0 0 - ( 3 4 4 0 . U 0  / K O  +.”:2 / C M U  
R O Z = D A R C O S I C R O )  
S K O = D S I N ( R O Z )  
S 2 R l J = D S  I N f Z.DO*ROZ ) 
S 3 R O = D S I N ( 3 . O O * K O Z )  
S 4 R O = D S  I N f 4. D O * K O Z  ) 
S A = ( C I - A M * ( S E * : C ~ ~ * C S + S ~ ’ ~ S ~ ~ * S S * S I - A ~ ~ ~  ) + S L A M + ( S ~ * C 2 3 + S S * C L A M - C ~ ~ S S ’ ~ S L  

1 A M )   ) / C M l J  
C A = D S Q R T ( l . U O - S A * S A )  
A Y O = X K M P % C M U * S S * C A  
A Y = - 3 . D O * X K M P * C M U * S S * C A  
B Y = 3 . D O * X K M P * C M U * S S * S A  
A O Y = ( Z . U O * A Y O * ( P I - R O Z )   + A Y * f - S Z R O )  ) / P I  
A l Y = f Z . D O * A Y O * S R O + A Y * ( S R U + S ~ R ~ / 3 . D ~ ) ) / ~ I  
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I M P L I C I T   R E A L * B ( A - H T O - Z , S )  
REAl, * ~ Q M A T T R R T K I   T K U U T R T K O U T I  
D I M E N S I O N ~ ( ~ ~ ~ ) ~ P ( ~ T ~ ) ~ X ( ~ ~ B ) ~ Y ( ~ T ~ ) T Z ( ~ T ~ ) T ~ ( @ T ~ ) ~ ~ H ~ ~ ~ ~ )  
D I M E N S I O N   Q M A T ( ~ O T ~ O )   T R O O T R ~ ~ O O ~ ~ R O U T ~ ~ ~ U O ~  
D I M E N S I O N  0 0 ( 1 0 , 5 , 5 )  

2 0 0   F O R M A T ( '   F O R   T H E   P U R P U S k  OF C O M P A R I S U N ,   U I V L Y   T H E   V A R I A T I O N A L  P A N E L  
1 - A S S O C I A T E D   I N E R T I A   T t R M S   A R E   C O N S I D E R E U ' )  

W R l T E ( h ~ 2 0 0 )  
1005 F O R M A T  ( T H E   S P A C E C R A F T   M A I N   B O D Y   I N E R T I A S   M U S T   R E   A D J U S T E D  T 

20 A C C O U N T   F O R   T H E   C O N S T A N T   I N E R T 1  A ' 1 
W R I T f ( 6 ~ 1 0 0 5 )  

L O 0 6   F O R M A T ( '   T E R M S   A S S O C I A T E D   W I T H   X i l l t X I 2 Z ~ X I 3 3   A S   T H E Y   A P P E A R  I N  T H  
1 E   S U B P R O G R A M   Q C A L C '  1 

W R I T E ( 6 r 1 0 0 6 )  
5000 F O R M A T ( '  TWO S E T S  UF € I G E N V A L U E S   R t S U L T   F U K   E A C H   C A S E   C O N S I D E K E D q P  

1 R O B A B A B I - Y   O N E   W H I C H  I S  U S t F U L   A N D  U N f ' )  
W K 1 T E ( 6 ~ 5 0 0 0 )  

5001  F O R M A T ( '   W H I C I 1   I S   N O T .  I N  T H E   F I R S T   S E T T   T H t   S Y S T E M   M A T R I X  I S  N U R M  
1 A L I Z E D   H Y  2 T O   T H E   M P Q ( M P ~ ) = ~ ) T A N D  I N  ' )  

W R I T E ( 6 , 5 0 0 1 )  
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6 5 5 5  CUNT  INUE 
3 2  CONT  INUE 

R€TURN 
END 

SUBROUTINE QCAILC ('J,AN(;Ck,NCASE,XMU) 
IMW-  I C l T   R E A L * 8 ( A - H T O - Z )  

C PARAMFTER  SliT FOR  EXAMPI-E  2. 
c GAM appears a s  p in  the text. 

GAM=2200 .00 /200 .D0  
ALF=2325 .U0 /200mUO 
HB=-lO.DO 
X I Z = 2 0 0 . 0 0  
BG=. 7 5 0 0  
XKG=l .D-3 
BETA=O.DO 

D I M E N S I O N   Q ( 5 9 5 )  

GO TO ( 1 9 2 T 3 T 4 )   T N C A S E  
c PANEL CONFIGURATION  PARAMtTEKS ARE A , B * X M = M , X I Y P = I Y P , X I Z P = [ Z p  AS 
C I ) E f I N E D  I N  C H A P T E R  7 .  

1 CONT INUE 

A=O.DO 
B=0.  DO 
XM=O.DO 
XIYP=O.OO 
x I z P = o . o o  
GO TO 2 0  

2 CONT  INIJE 

A=3.UO 
B=2.5DO 

C NO PANEL  CASE 

C 2 PANELS,  €ACH 10' H I G H  BY 5 '  WIDE 

XM=3 1 2 0 0  
X IYP=6 .5DO 
X IZP=1 .36DO 
GO T O  2 0  

3 C O Y T I N U f  

A=3.DO 
C 2 PANELS,  EACH 7 ' H I G H  bY 7 '  W I D E  

B = 3  500 
X I Y P = 1 . 6 0 0  
XIZP=1.6DO 
GO TO 2 0  

4 CONTINUE 

A=3. DO 
B=5.DO 

X I ZP=6.500 

C 2 PANEI-Sr  EACH 5 ' H I G H  BY 10 '  W I D E  

XIYP=1.36DO 

2 0  CONT I N U E  
C2TP=DS  IGN ( 1 . D O I D C O S (  ANGL E 1 1 
S Z T P = D S I G N ( I . D O , D S I N ( A N G L E  J I 
S S T P = ( l . D O - C 2 T P ) / 2 e D O  
C S T P = ( l . D O + C 2 T P ) / 2 . 0 0  
STCTP=SZTP/2.D0 

SSTPD=S2TPWMEGA 
CSTPD=-S2TP*OMEGA 
STCTD=C2TP*OMEGA 

OMEGA=l 0-3 
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C W I N  M A I N   P R O G R A M  I S  2 O M E G A  
C X M U  I S  T R A N S F E R E D   F R O M  T H E   M A I N   P R O G R A M  

S M U = D S  I N  ( XMU 1 
C M U = D C O S  ( X M U  1 
S S M U = S M U * S M U  
S B = D S I N ( B E T A )  
C B = D C O S ( B E T A )  
C S B = C B * C B  
S S B = S B * S B  

C P A N E L   A S S E M B L Y   I N E R T I A S  I N  S P A C E C R A F T   C O U R D I N A T E S  
C V A R I A T I O N A L   E O U A T I O N  

C A C T U A L   E Q U A T I O N  
C X I 1 1 = ( X I Y P - X 1 Z P * S S M U - X M r ( t ) * S M U ) * * Z ) * C S T P . ; X M * ( ( A + B * C M U ) * * Z + ( B * S M U )  
C 1 * * 2 ) + X I Z P  

C V A R  1 A T  1 O N A L   E Q U A T  IUN 

C A C T U A L   E Q U A T I O N  
C X I 2 2 = X I Y P + X I Z P * S S M U + X M * ( B * S M U ) * * 2  
C V A R I A T I O N A L   E Q U A T   I O N  

C A C T U A L   E Q U A T I O N  
C XI33=(XIYP-XIZP+SSMU-XM*(B*SMU)**2)sSSTP+XM*((A+B*CMU)**2+(B*SMU) 
C 1 * * 2 ) + X I Z P  
C P K I M E U   I N E K T I A S  UF C H A P T E R  7 

X I l P = A L F * X I Z + X I l l  
X I 2 P   = G A M * X I Z + X I 2 2  
X I 3 P = X I Z + X I 3 3  

X I K U N = ( X I Y P - X I Z P v S S M U - X M * ( B 7 S M U ) ~ ~ * 2 )  
X I l l U = X I K O N * C S T P D  
X I 1 3 D = X I K U N * S T C T U  
X 1 3 3 U = X   I K O N * S S T P , O  

X I l l = ( X I Y P - X I Z P * S S M U - X M s ( ~ * S M U ) * r Z ) * C S T P  

X I 1 3 = ( X I Y P - X I Z P r S S M U - X M * ( B ~ S M U ) * * Z ) * S T C T P  

X I 2 2 = 0 . 0 0  

XI33=(XIYP-XIZPxSSMU-XM*(B*SMU)**2)*SSTP 

L I ) k K I V A T I V E S   O F   P A N t l -   A S S t M H I - Y   I N E R T I A S  

A = - S f j * C t j * H B + X I l l U  
B = U M E G A * ( X I l P + X I 3 P - X 1 2 P ) + S S t j * H H + X 1 1 3 U  
C = C H x : H ( ; - s B * H H  
U=4.  U O * U M E G A * O M t G A *   ( X I   3 P - X  12P + S S B c U M t G A * , H H + U M E G A ~ X  I 1  31) 
E = U M E G A * U M E G A * X I  1 3 + 0 M E G A o S B 7 C l 5 ~ ~ H H - U M t ( ; A : ~ X I  1 1 U  
F = X K G - H B G U M E G A  
G=-UMkGA*(XIlP+XI3P-X12P)- C S t j ~ S H H + X 1 1 3 L J  
H = S B : : C H + H B + X I 3 3 U  
P = - S B * H G - C B * H B  

C iJ R A T H E R   T H A N  V I S  I N  T H E   l E X T  
V = 4 . U O * O M E G A * O M t G A * X I  1 3 + S H ~ C B * H H * U M t G A + U M t G A x c X I  3 3 U  
K = O M t G A *  C S H ~ ~ H B - U M t G A * U M t G A ~ ( X I ~ P - X l l P ) - U M t ~ ~ A ~ X I l 3 U  
s = x   1 3 P * C + X  I 1 3 * ~  
T = X I L P * P + X I 1 3 * C  
CK=-l.DC/(XI13*XI13-X13P~XIlP) 

C S Y S T E M  A M A T R I X  
~ J ( 1 * 2 ) = 1 . 0 0  
Q ( 2 9 1 ) = C K * c (  X I 3 P * D + X I 1 3 e V + S * C H 7 U M t ~ A ~ H ~ / B G t  
O ( 2 1 2 ) = C K * (  X I 3 P * A + X 1 1 3 c ( ; + S * S B * H ~ / t j t i )  
Q ( 2 , 3 ) = C K + ( X I 3 P + C t j s X K ~ - X I l 3 7 X K ~ ~ S t j - S : ~ ~ / H G )  
Q ( 2 r 4 ) = C K * ( X 1 3 P * B + X I   1 3 * H + S * C l 5 * H H / H G )  
Q ( 2 * 5 ) = C K ~ ( X I 3 P * E + X I l 3 * R - S ~ H B ~ S B * U M ~ G A / t j G )  
W (  3 9  1 )=CB"OMl iGAx :H l? /BG 
0 ( 3 , 2 ) = H B * S B / H G  
Q ( 3 9 3 ) = - F / B G  
Q ( 3 , 4 ) = C B * H B / B G  
0 ( 3 9 5 ) = - H B * S B * U M E G A / ~ G  
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APPENDIX C 

DERIVATION OF THE RESIDUAL  MAGNETIC  DISTURBANCE 
TORQUE MODEL 

Before  proceeding  with  the  development of the  magnetic  disturbance  torque  model,  it is necessary  

to define  the  coordinate  frames  pertinent to th i s   d i scuss ion .  

First,  consider  the  coordinate  frame  shown  in  Figure C . l .  This  f igure  defines  the  orientation of 

the  ecliptic  plane  with  respect to the  equatorial   plane.   The  l ine of intersection of the   p lanes   def ines  

the  vernal  and  autumnal  equinoxes.   The  angle  between  the  planes  remains  constant  and is 2 3 O  27'. 

The  angle  e defines   the  posi t ion of the  sun  with  respect  to  the  vernal  equinox as the  sun  travels  in  the 

ecl ipt ic   plane.  

def ines   the  ecl ipt ic   plane  coordinate   axes ,  

and 

?,= defines  the  equatorial   plane  coordinate  axes.  

L A  

The  ecliptic  plane  normal is defined  by  the  positive z R  axis, and  the  equatorial  plane  normal is defined 

by  the  positive z, axis. 

Second,  consider  the  relationship  between  the  orbital   and  equatorial   planes as shown  in  Figure (2.2. 

The   ang le  D def ines   the   angle  of orbit  inclination  and is measured  between  the  orbit  plane  normal  and 

the  north  spin  pole axis, the  posi t ive z, axis. The  angular  position of the  vehicle   re la t ive  to   the as- 

cending  node,  the  point  where  the  vehicle  passes from the  southern  to  the  northern  hemisphere, is de- 

fined as S2,t where $2, is orbit  rate  and t is time. The  angle h defines  the  posit ion of the  ascending 

node  relative to the  vernal  equinox. 

2 x -  defines  the  orbit  plane  coordinate  axes. 

The  orbit  plane  normal is defined  by  the  posit ive zn  axis. 
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North  Spin  Pole 
Normal  to  Equatorial  Plane 

Normal   to  Ecl ipt ic   Plane 

Ec l ip t ic   P lane  

Equinox 

Figure  C.1-Orientation of the  ecl ipt ic   plane  relat ive  to  the  equatorial   plane.  

North  Spin  Pole 

z e  
Orbit   Plane 

Orbit   Plane  Normal 

Vehic le  
Posit ion 

Node  Equatorial   Plane 

Figure  C.2-Orientation of the  orbit  plane  relative  to  the  equatorial  plane. 
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Third,  it  was assumed  that the  spacecraft is under perfect  control so that  the  spacecraft  coordinate 

axes are coincident with the orbit reference  coordinate axes defined in the beginning of Chapter 2. That 

is, the  spacecraft  coordinates 

spacecraft yaw axis ~ 

are coincident with the  orbit reference coordinate axes 

In general, the torque due to a residual magnetic moment, T,, can be written a s  T, = M x B, 

where M = magnetic moment vector and B = earth magnetic field  vector. 

It hzs been  assumed for the  purposes of this  study  that the  angle between the  geographic and geo- 

magnetic north pole is zero. Accordingly, the components of the earth’s magnetic field  vector can be 

expressed in terms of spacecraft  coordinates (Reference 10) a s  

where 

m e  
B yo = -- ,(Ca) , 

r O  

and 

m e  
4 0  - - 7 (2SaSR0t) , 

0 
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where m e  = the  magnetic  dipole moment  of earth in G-ft3 and r o  = the  orbit radius from center of the 

earth. 

Consider  the class of spacecraft without driven solar panels. If the magnetic moment vector for 

the spacecraft  alone is defined as  

it  is  a simple matter to  express  the  disturbance torque in  terms of i ts  components: 

T d o  = mo x Bo 1 

where 

or 

For this  case, the  disturbance  torque T d  = T,,, and T d ,  and T,,, the two componentsof  interest, 

can be written  directly in terms of their  frequency  components: 

Next,  consider  the class of spacecraft with driven solar panels. Since the panels  are normally 

fabricated from nonferrous materials,  it is assumed  that  the  only  disturbance torque component with 

which we must concern ourselves is that  resulting from a  constant  current  distribution on the  panel 

faces  themselves. 
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The  solar  panel  assembly is detailed in Figure C.3. Where the  panel  assembly  coordinate  axes 

are  defined by 

The panel  face normal is defined by the x p  axis, and the y p  axis  lies in  the  plane of the panel  face and 

is perpendicular to the  panel hinge line  at  its  intersection with the  panel  shaft. zp is parallel to  the 

panel hinge line and perpendicular  to both xp and y,. These three axes form a right-handed  coordinate 

system. The X axes originate from the  center of the solar  panel  shaft. The distance  between the 

spacecraft center of gravity and the  panel hinge line measured along the y o  axis is a.  The  distance 

between  the  panel hinge line and the panel  center of gravity is b .  The smallest angle measured be- 

tween the panel  shaft  line and the y p  axisis p.  The  angle measured between the zP and z o  axes  is 8,. 

The  driven panels are  assumed to have two degrees of freedom, one about  the  panel  shaft, which i s  

located  along  the spacecraft pitch axis, and  one perpendicular  to th i s ,  along  the  panel hinge line,  as 

shown in Figure C.3.  The two degrees of freedom  make i t  possible to  align  the  solar panels so that 

the solar cell  faces are  always normal to  the spacecraft-sun  line,  a  line drawn between the spacecraft 

and  t,he sun. The  energization of the cells by the s u n  produces  the  constant  current  distribution with 

which we are  concerned. 

2 

When the so lx  panels are normal to the  nonocculted  spacecraft  sunline,  the magnetic moment m p  

due to  the  constant  current  distribution on the  panel  face and expressed in solar  panel  assembly  co- 

ordinates X p  i s  
,L 

m P = [ax'] . 

Figure  C.3-Solar  panel  assembly,  (a)  view  looking  down  panel  hinge  line,  and (b) view  normal  to 

shaft  and  hinge  l ine. 
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When the  earth occults  the sun, m, 0. The  resulting  disturbance torque  in spacecraft  coordinates is 

T,, = m o p  x Bo, where mop is the moment expressed in spacecraft  coordinates. For this  class of 

spacecraft, the total  magnetic  disturbance torque is T, = T,, + T,,. 
To detail T,,, it is  first  necessary to transform mp from panel  coordinates into mop in  spacecraft 

coordinates. For ease of manipulation, it will be assumed  that  since the vehicle under discussion is 

in earth  orbit,  the  spacecraft-sun  line and earth-sun  line are coincident.  The problem of occultation 

wil l  be considered  separately. 

It can be demonstrated  that if the  hinge  angle p were adjusted to equal the  angle  that  the  earth- 

s u n  line makes  with the  orbit  plane  and if the proper initial reference  angle of the solar  panel  shaft 

were chosen,  then the sunline will  always be kept normal to  the  panel face if the  panel  assembly is 

simply rotated about its shaft at  an angular velocity of a0. The  solar  panel  assembly  transformation 

rotational  sequence from panel  assembly to spacecraft  coordinates, therefore,  was  chosen to be first  a 

negative p rotation about the hinge line  parallel z, and second  a  negative 0, rotation about y,, the 

axis of the  shaft.  The  negative  rotations must be performed to  negate  the  effects upon the  solar  panels 

of the sun angle and the spacecraft angular  position in orbit.  The  negative 8,  rotation must be per- 

formed because the spacecraft  rotates once about its pitch axis  each orbit. 

or 

where 

p = angle  between  the  earth-sun  line and the orbit plane, 

,g = e + !Jot and is the  angle between the z, and zo axes, 
P PO 

PO 8 = initial  solar  panel shaft  reference angle, 

and 
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It is assumed  that p remains constant during any particular  orbit. After transformation, 

where mop i s  the  magnetic moment due to the solar  panel  assembly in spacecraft  coordinates. 

mop = m 
X P  

Finally 

where 

or 

(2spsa)sn0t + (- cpco)s(ep0 + not) 

Td, = - 

m e m x p  1- cpsos(ep0 + not)lcnot + [- 2cpsoc~e,, + a  
r :  

(- sosp)cp0t + (- cpco)c(ep0 + not) 

The  components  pertinent to this discussion are 

T~~~ = (2spso)sn0t + (- cpco)s(ep0 + not) 

and 

Tdzp = (- SoSp)CR,t + (- CpCa)C(BpO + not) . 

B~ superposition  the  total  disturbance  torque  caused by spacecraft  alone plus the s o l a  Panel  assembly 

is  Td = T d 0  + Td,. 
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s^ as 

C. I Derivation of the Sun Angle 
A 

Reference is made to Figures  C . l ,  C.2,  and C.3. Define 2, as the  orbit  plane  normal  unit  vector, 

the  earth-sun  line  unit  vector,  and 

- - - 
where ie is a s e t  of unit  vectors  coincident  withX,.  Expressing s  ̂ in  terms of ie coordinates, 

2 - 

,. 
S = C c i e  + Sr(C(23O27’)Fe + S(23027’)ie). 

Similarly, 

2, = so (- CAie - SAj , )  + cu;,. 

The  unit  vectors  and in are  shown in Figure C.4, and  the  sun  angle p can  be  calculated by forming the  dot 

product ,$ . in. 

s.zn=c(900tp)=-sp, 

i. 2, = - CESUCA + s€[cos(23°27’) - SaSAC(23°27’)], 

. . A  

or 

and 

sp = CESUCA - s€[cos(23°27’) - SoSAC(23°27’)]. 

i- Orbit  Plane  Normal 

Onto  Orbi t   Plane 

Figure  C.4-Definit ion  of  sun  angle. 
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C.2 Derivation  of  the Solar Panel  Reference  Angle 

Reference is made to Figure C.5. The  two degrees  of  freedom  associated  with  the  solar  panel  assembly 

allow the x axis to  be  adjusted so that  it is parallel to the  sunline  vector $. The  spacecraft  positive  roll  axis lies 

along the  spacecraft  velocity  vector. 
P 

If the  ascending  node is expressed in terms of the  equatorial  plane  coordinates, 

Then, 

Algebraic  manipulation  yields  the  result 

and further 

2, 
,. Orbit   Plane  Normal 

Spacecraft Ro l l  Ax i  S 

to  Be Paro l   le i  to Sun1 ine 

s  ̂ x ẑ " (In  the  Orbit   Plane  and 

x z^,INormol to   the S, 2, Plane) 
" 

Figure  C.5-Definit ion  of  ini t ial   solar  panel  reference  angle. ŝ  i s  not   necessar i ly   in  the 

orbit   plane. 
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C.3  Consideration  of Umbra Effects 

When including  the  disturbance  torque  due to driven solar panels,   at tention  must  be  given to the 

consideration of the  umbra,  that  portion of the  orbit  during  which  the  sun is occulted  by  the  earth.   This 

portion of the  orbit is defined by the  umbra  half  angle c0. 
In Figure C.6, the x and y axes  are  orthogonal  and  f ixed  in  the  earth.   They  are  not  necessarily 

coincident  with  the x, and y e  axes.   The  orbit   plane is arbitrarily  rotated  about  the x axis  through  an 

angle ‘, where p‘ = 90° - p. R e  is the  radius of the  earth,  and h is the  height of the  spacecraft   path 

above  the  earth.  

Assume  that  the  sun is located  along  the z axis   and  above  the x, y plane. For the  orientation 

shown,  the  sunline is perpendicular to the  orbit  plane  and p = 90’. If p’ is defined as 90° - p ,  i t  is 

apparent  that  for p ’ =  0, no  umbra  exis ts .   As  p’ is   increased from zero  by  rotating  the  orbit  plane 

about  the x axis ,   the   projected  length R e  measured  along  the y axis  on  the  orbit   plane  f inally  reaches 

( R e  + h )  and  the  earth  begins to occult  the  sun. A s  p’is   increased  past   th is   point ,   the   projected 

length R e  measured  along  the y axis  on  the  orbit   plane  exceeds ( R e  + h ) .  It is for this  si tuation  that   an 

umbra of finite  duration  exists.  The  half  umbra  angle c0 is measured  from  the y axis  in  clockwise  direc- 

tion to that point at which  the R e  projected  length  onto  the  orbit  plane  .equals ( R e  + h ) .  For the  min- 

imum value of p’ for  which  occultation  occurs, 

( R e  + h )  Cph = R e  
or D n 

R e  + h 
pm = c-1 e 

t Y  

-+X 

Path of 
Spacecrafl 

Figure  C.6-Definit ion  of  half   umbra  angle. 
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If corresponding  radials  are drawn  both  on the earth  cross  section and  on the  orbit  plane of Fig- 

ure C.6 before the rotation of the orbit  plane through the  angle p’, then after an x rotation of the orbit 

plane, the  angle  between any two of the  corresponding  radials  can  be  defined by the angle v a s  a 

function of ( and .p. It .can be  shown that CU = d m ; ’ ,  and  for [ =  0, Cv = Cp‘. 

For p ’ >  p h ,  the half  umbra angle  can be  computed a s  

or 

For < = 0, there is a minimum p ’ defined by 

a s  before. After rearranging  terms, 

but S (90° - p )  = C/-L, S O  

where R e  and h are constant, and ,LL is the  angle  between  sunline and orbit plane, 

Cleasly, if orbital  precession is neglected during  any one orbit,  the waveform corresponding  to 

the  incident solar energy on the solar panels is periodic at orbit  rate. This means that T d x p  and 

T d z p  can be expanded  into  a  Fourier series whose basic frequency i s  orbit rate. Furthermore, the 

resulting Fourier coefficients  can  be  used to evaluate the  previously  discussed  steady-state  response 

function R with respect  to the magnetic disturbances produced by the  solar panels. 
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C.4  Umbra-Associated  Disturbance  Fourier  Coefficients 

The  nonocculted x and z components of T d p  are  rewritten  in  the  following  manner. 

r n  

The  phase  angle  a. was  introduced to allow for the  convenience of working  with  an  umbra 

centered  at  n radians  for all 6 and A. A plot of incident  sun  energy  on  the solar panels   versus   space-  

craft  position  in  orbit is shown  in  Figure C.7. 

Figure  C.7-Plot of incident  sun  energy  versus  orbit  position. 

The  angle uO is the  angle  between  the  ascending  node  and  the  projection of the  sunline  onto  the 

orbit  plane. A s  can  be  seen  in  Figure C.5, (ao + 0 ) = 90'. For aO = 0, the  projection of the  sunline 

onto  the  orbit  plane is coincident  with  the  radial   that   defines  the  ascending  node.  The  angle aO can  

be  evaluated  simply, 

PO 

ca ,  = c (90" - e = sepo 
P O  

and 

SQ, = s (90" - e ) = cepo . 
p? 

After  expanding T and Tdz,, and  making  the  required  trigonometric  substitutions, 
dXP 

Tdxp = (2spsus a. - CI . ICu)C~ot  + (2spSuCaO)S~ot 
m m,/r.i 
X P  
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r 

and 

For simplicity,  these  equations  can  be  rewritten as 

and 

Tdxp = A x C a , t  + BxSaot 

TdZD = AZCRot  + BZSROt .  

(C.9) 

(C.  10) 

The functionf(t), used for analytical  expression of the  effect of the umbra upon  these  torque  equations, is 

defined as 

Then, 

where 

a . =  - 
111 'II TfipCnRot d R o t ,  

and 

b . =  - 
111 7r ' 1" Tfi,,StlRot dROt . 

-71 

( C . 1 1 )  
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The  resulting  Fourier  coefficients  are 

Bi r 
"[ 71 s(3c0)1 ' 

s ( y o ) l ,  
bI i  = - (7" {,) + ~ 

b2i = - ss', - 

IT 

The  resulting  Fourier  expansions  are 

Tfxp = 2 + alxC!2,t + a2xC2S20t + . . . + anx CnS2,t a O X  

+ b,,SS2,t + b2sS2S2,t + . . . + bIlxS~zS2,t 

and 

" 
aOz 

TfzP - 2 + a l z C R O t  + a,ZC2S2;20t + . . . + a1,ZCnS20t 

+ bIZSS2,t + b2zS2R,r  + . . . + blzzS1zS2,t. 

(C. 12) 

(C.13) 
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APPENDIX D 
LISTING OF THE  OPTIMIZATION COMPUTER  PROGRAM 

In the computer listing  shown,  the program has been set up to run the  search for the  no-solar-panel 

case described in Chapter 8. The solar panel case, illustrated by Example 2, can be repeated by in- 

corporating  the changes noted  within the computer  program itself. Furthermore,  the  user is free to in- 

corporate any  parameter array of h is  choosing. This parameter array must include  the  orbit  altitude 

and orbit  inclination  angle and  may,  for the  solar  panel case, include  the  location of the sun in the 

ecliptic  plane, and/or the location of the  ascending node relative to the vernal  equinox. Zero  mag- 

netic moment for the  solar  panel  assembly (XMXP = 0 )  tells the program that  the  user is  interested in 

the no-solar-panel case. 

The following  four subroutines  are required for the  execution of the optimization  routine: 

(1) PRBM. This subroutine is  available through the  “System/360  Scientific Subroutine Package 

(360A-CM-03X) Version I11 Programmers  Manual.” page  191, IBM H20-0205-3. The subroutine i s  a 

polynomial solver. 

(2) QREIG 

(3) QRT. 

(4) HESSEN. Subroutines 2,  3 ,  and 4 are  available through the SHARE Program Catalog, SDA 

3006-01.  August  1964. Their  purpose i s  to solve for eigenvalues by the QR transform. The author of 

the SHARE  program is   F .  P. Emad. 

I M P L I C I T   R t A L * 8 ( A - H , U - Z )  
R E A N -  $4 C O E t X t Y t P U I -  v D A M q 0 A M P v D A M M  
D I M E N S I O N  C S V l h ) q C ~ ( h ) t C C ~ l h ) t C ~ A V l 6 )  

1000 FOKMAT(U12.4tZt12.4,71~,4Ul2.4) 
2000 F O R M A T (  1 H 1  I 

2 0  F O R M A T ( ’  K I N  K A D S . - K F   A N U + I M   P A K T S  UF UUM. S Y S T E M   P A K A M E T F  

2 1  F O R M A T (  I S Y S T  K U U l  NKMLZL)  B Y . 0 0 1  M 7  M 1   M 2   M 3  

10 F O K M A T  ( e K M S   K U L L  K M S  YAW R M S   G I M B A L   E K K O  

1n S E T S   T A U   Z t T A  t P S  11- ulu C A M U A  

1 M 4  M 5  M 6  A N G L t S   A K t  IN K A U I A N S  e )  

1 K S  I N  K A U I A N S  I ) 
C K E S I D U A I -   S P A C E C R A F T   M A G N t T l C   M U M t N T  1h I-T L B  / G A U S S  

X M O = 3 . 9 6 0 0 * 7 . 3 H U - 5  
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C R E S I D U A I ,   M A G N E T   I C   M O M E N T  OF B O T H   P A N t L S  I N  FT L B  / G A U S S  

C U S E   F O R   S O - A R   P A N E L   C A S t  
C X M X P = 5 . D 0 * 7 . 3 8 U - 5  
C D A M M = l / T M = M A X I M U M   S E T T L I N G   T I M E  I N  S k C O N D S  

XMXP=O.DO 

D A M M = . O 2 6 5 D O  
C I F  P R O G R A M   P R I N T S   O U T   N l = O ,  NU P A K A M t T t K   S t 1  W A S   A 6 I - E   T O   M t E T   T H E   D A M P I N G  
C R E Q U I R E M E N T  
C U S E  ( * )  F O R   N O   S U - A R   P A N E L   C A S k ,   A N D  ( * + * I  FUK S O - A K   P A N E L   C A S E  

C L 1 = N U .  OF I N E R T I A   D I F k E K t N T I A L S  

C Do 1 7 1  M 1 = 2 r L  1 9 2  

N 1 = 0  

L 1=6 

D O  1 7 1  M l = l t L l  
S Q = l  . D l 2  

C L 7 =  NO. O F   Y A W   I N t K T I A S  

C 
1- 7 = 3  
DO 1 7 7  M 7 = 3 r L  7 
00 1 7 7  M 7 = l , L  7 

C L 2 =  NO. O F   R A T I O S  

C 1 7 2  M 2 = 1 r 1  

C L 3 =  NO. OF G I M B A L   A X I S   A N G L t S  

C 0 0  1 7 3  M 3 = l r L  3 r 2  

C L 4 =  N O . O F   M O M E N T U M   B I A S E S  

1- 2 = 5  

DO 1 7 2  M 2 = l t L 2  

L 3 = 5  

D O  173 M 3 = 1 , L 3  

1-4=12 
D O  1 7 4  M 4 = 1 , L 4  

L 5 = 3  
C L 5 =  N O .   O F   D A M P I N G   R A T I O S  

D O 1 7 5   M 5 = 1  r!. 5 
C L 6 =  NO. O F   S P R I N G   C O N S T A N T S  

C 0 0  1 7 6  C 6 = 1 r L b r 2  
I_ 6 = 5  

DO 176  M 6 = l r L 6  
C A L L   C M P U T ( S Q R T D A M P T M ~ T M ~ , " ~ , M ~ , M ~ T M ~ T T S , Z S T E P S L S T X L A M S , C S V ,  

~ D A M P F T C F T X I Z ~ X M X P ~ X M U )  
I F  ( D A M P   - D A M M ) 1 7 6 ~ 1 7 h , 1 7 8  

1 7 8  C O N T I N U E  
C S C A L E   S Q K T ( W E 1 G H T E D   M k A N   S Q U A R E   E R R O R   F C N )   F O R   V A R I O U S  YAW I N E R T I A S  

S Q R = S Q R / ( X I Z * l . D - 6 )  
I F (  S Q R   - S Q ) 1 7 9 r 1 7 6 , 1 7 6  

C S Q R T ( W E 1 G H T E D   M E A N   S Q U A R E   E R R U K   F C N  K 1 

C S A V E   M I N I M U M   V A L U E S   A S S O C I A T E D   W I T H   M I N I M U M   W E I G H T E D   M t A N   S Q U A R E   E R R O R  
179 S O = S Q R  

C N E G A T I V E  OF R E A L   P A R T  OF D O M I N A N T   S Y S T E M   R O O T /  - 001  
D A M = D A M P  
N 7 = M 7  
N 1 = M 1  
N 2 = M 2  
N 3 = M 3  
N4= M 4  
N 5 = M 5  
N 6 = M 6  

C C F ( 2 ) = C F ( 2 )  
C C F ( 4 ) = C F ( 4 )  
C C F ( 6 ) = C F ( 6 )  

C W E I G H T I N G   F A C T O R S   D E F I N k D  I N  C M P U T  

( * * * )  

( * )  
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C 3 C O M P O N E N T S   O F   W E I G H T E O   E R R O R  
C S A V ( Z ) = C S V ( Z  J 
C S A V ( 4 ) = C S V ( 4 )  
C S A V ( 6 ) = C S V ( 6 )  

D F R E Q = D A M P F  

X I = X I Z  

C DAMPED  NATURAI ,   FREQ.  OF U U M I N A N T   S Y S T E M   R O l l T / . O O l  

C YAW I N E R T I A  

176 C O N T I N U E  
175 C O N T I N U E  
174 C O N T I N U E  
173 C O N T I N U E  
172  C O N T I N U E  
177  C O N T I N U E  

W R I T E ( 6 9 2 0 )  
W R I T E ( 6 r 2 1 )  
W R I T E ( 6 , l O O O J  SO * D A M , D F K E Q , N 7 ,  

1 N 1 1 h ' 2 ~ N 3 1 N 4 1 h ' 5 ~ f ' J h  
~ T T S ~ Z S ~ E P S - S T X L A M S  

C S C A l - E   S O K T ( M E A N   S O U A K E   E K K U R )   C U M P C I I I t N T S   F U R   V A K I U O S   Y A N   I N t K T I A S  
U ( I  4000 K S V = 2 9 6 9 2  
C S A V I K S V ) = I U S O K T ( C S A V ( K S V ) ) / I X I  ; c l . l j - 6 )  ) 

4000  CIJNT I N U t  
3 0 0 0  F O K M A T (  7 0 1 8 . 6 )  

W K I T E ( h , l O )  
W K I T E ( ~ , ~ ~ ~ ~ ) C S A V ( ~ ) T C S A V ( ~ ) , C S A V ( ~ )  
W K I T E ( h T 2 0 0 0 1  

1 7 1   C O N T l N U t  
N 1 = 0  

C 
R t T U K N  
E N U  
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C USER  CAN  SUPPLY  UP TO 5 VALUES OF Y A W  I N t R T I A   I N   F T  L B  SEC SEC 
x I z s ( 1 ) = 1 0 . o 0  
X I Z S ( 2 ) = 1 0 0 . D 0  
x I z s ( 3 ) = 2 o o . o o  

C IJSER  CAN  SUPPLY  UP TO 5 VALUES OF GIMBAL  AXIS  ANGLE I N  RADIANS 
B E T A ( l ) = O . D O  
B E T A ( 2 ) = 2 2 . 5 D O * F  
B E T A ( 3 ) = 4 5 . D O * F  
B E T A ( 4 ) = 6   7 . 5 D O * F  
B E T A ( 5 ) = 3 0 * D O * F  

C USER  CAN  SUPPLY  UP  TO 6 D I F I - E R E N T I A L   I N E R T I A S   I N   F T  L B  SEC S E C  
D I F F R ( 1 ) = 5 0 . D O  
D I F F R ( 2 1 = 1 0 0 . 0 0  
D I F F R ( 3 ) = 2 5 0 . 0 0  
D I F F R ( 4 ) = 5 0 0 . D O  
D I F F R ( 5 ) = 1 0 0 0 . D O  
D I F F R ( 6 ) = 2 0 0 0 . 0 0  

C USER CAN SUPPI-Y UP TO 5 I N E R T I A   R A T I O S  
R A T I O (  1 ) = e 7 5 0 0  
R A T I O ( Z ) = l . D O  
R A T I O ( 3 ) = 1 . 3 3 3 3 3 3 0 0  

C USER CAN SUPPI-Y  UP T O  1 2  MOMENTUM B I A S   V A L U E S   I N   F T  L B  S E C ( H  I N  PKGRM=-HA) 
H A (   l ) = l O . D O  
H A ( 2 ) = 5 . 0 0  
H A (   3 ) = 2 . 5 D O  
H A ( 4 ) = 1 . D O  
HA(   5 )= .5DO 
H A ( 6 ) = . 1 D O  
H A ( 7 ) = - . 1 D O  
HA(8 )= - .5DO 
HA(9 )= -1 .DO 
H A ( 1 0 ) = - 2 . 5 D O  
H A (  11 )=-5.DO 
HA ( 1 2  ).=-lO.DO 

C USER  CAN  SUPPLY  UP  TO 9 SPRING  CUNSTANTS I N  FT L H  / R A D I A N  
Q G ( l ) = l . D - 4  
Q G ( 2 ) = . 3 3 D - 3  
Q G ( 3 ) = 1 . 0 - 3  
Q G ( 4 ) = . 3 3 D - 2  
Q G ( 5 ) = 1 . D - 2  

C USER  CAN  SUPPLY  UP  TO 6 DAMPING  CUNSTANTS I N  FT L B  S E C /  RADIANS 
B G ( 1 ) = . 2 5 D O  
B G ( 2 ) = . 5 D O  
B G ( 3 ) = . 7 5 D O  

C D E F I N I T I O N  OF NORMALIZED  PARAMETER  SET 
H = H A ( M 4 ) / ( X I Z S ( M 7 1 ~ 1 . U - 3 )  
Hz-H 
Q = O G ( M 6 ) / ( X I Z S ( M 7 ) s l . U - 6 )  

C S T A B I L I T Y  CHECK 
i F ( O - H ) 7 1 7 1 8  

7 SQK = 1  .u12 
DAMP 
GO TU 6 

=o.  

8 CONTINUE 
B = B G ( M S ) / ( X I Z S ( M 7 ) * 1 . ~ - 3 )  
S H = D S I N ( B E T A ( M 3 ) )  
C B = O C O S ( B t T A ( M 3  1 )  
CSB=CH*CB 
S S B = S B * S B  

200 



20 1 



C E V A L U A T I O N  OF MAGNITUDE OF NUMERATORS OF 6 TRANSFER  FUNCTIONS  AT W = O v W = l * W = 2  
C H I D = D S Q R T ( C H I D )  
C H I ( N I M ) = C H I D  

14 CONTINUE 
C E V A L U A T I O N  OF MAGNITUDE  SQUARED  VALUE UF DENOMENATOR OF TRANSFER  FUNCTION 
C A T  W=OrW=l  *W=2 

E ( N ) = ( D ( 1 ) - 0 ( 3 ) r W ~ ~ + D ( ~ ) * W ~ * 4 ) * * 2 + ( D ( 2 ) * W - D ( 4 ) * W * * 3 + D ( 6 ) ~ W * * 5 ) * * 2  
1S W=W+l.DO 

S Q R = O  DO 
C 2 3 = D C D S ( 2 3 . 5 U O * F )  
S 2 3 = D S I N ( 2 3 . 5 D O * F )  

C USER I N P U T   O R B I T   A L T I T U D E   I N   N A U T I C A L   M I L k S  
AL T=600 DO 

C USER INPUT  SIGMA I N   R A D I A N S  T T H E   O R B I T   I N C L I N A T I O N  ANGLE 
SIGMA=1.00*3.14159200/6.D0 
P I = 3 . 1 4 1 5 9 2 0 0  
C M X = X M X P * X M E / ( ( ( 3 4 4 O . D O + A L T ) * 6 0 7 6 . U 0 ) * * 3 )  

S S = D S I N ( S I G M A )  
C S = D C O S ( S I G M A )  

CMO=XMO * X M E / ( ( ( 3 4 4 0 . 0 0 + A L T ) ~ 6 0 7 6 . 0 0 ) * * 3 )  

U M C = D S ~ R T ( l . U ( ~ - ( 3 4 4 0 . U 0 / ( ~ 4 4 O . U O + A L T ) ) 3 ~ 2 )  
C BYPASS If NO S O " A K  PAlvEl-S 

I f ( X M X P ) 1 0 0 1 T 1 0 0 0 1 1 0 0 1  
1001 CONTINUE 

C F I N D I N G  H O R S T  CASE L A k U A ~ t P S I L U I Y ~ Z E T A r  AND TAU 
C ANGI-E INCREMtNT FOR LAMDA AND € P S I L O N  SEARCH I N  RADIANS 

C AIVGI-E INCREMENT FOR Z t T A  AND TAU  SEARCH I N  RAUIANS 
XSEAT=30.DO*F 

XSEAR=45.DO*F 
I F ( N F G 1 ) 2 0 0 0 r 2 0 0 1 ~ 2 0 0 0  

2 0 0 0   C O N T I N U E  
XL AM=O. 00 
DO 100 I S O = l * l 2  

2 0 0 1   I f ( N F G 2 ) 2 0 0 2 r 2 0 0 3 r 2 0 0 2  
2 0 0 2   C O N T I N U E  

EPSL=O.OO 
u u  101 I S 1 = 1 * 1 2  

2 0 0 3  I F ( N F G 3 ) 2 0 0 4 r 2 0 0 5 r 2 0 0 4  
2 0 0 4   C O N T I N U E  

Z=U.DO 
DO 1 0 2   I S 2 = 1 , 8  

2 0 0 5   l F ( N F G 4 ) 2 0 0 6 ~ 2 0 0 7 ~ 2 0 0 6  

2 0 0 6  CONT I N U t  
T=O.DO 
DO 1 0 3   I S 3 = 1 r 8  

2 0 0 7  CUNT  INUE 
S E = D S l N (   k P S L  1 
C E = D C O S ( t P S "  1 
S X L = D S I N ( X L A M )  
CXl,=DCDS(XI-AM) 
S T = D S I N (  T 1 
CT=DCOS ( T  1 
SZ=DS I N (  Z 1 
C Z = D C O S ( Z )  

CXMU=DSQRT(l.D0-SXMU*SXMU) 
SXMU=CE=SSsCXL-SE3(CS * S 2 3 - S S ; ~ s X L ' ~ ' C 2 3 )  

I f ( U A B S ( C X M U ) - . O l U O ) 1 0 ~ ~ 1 0 ~ ~ 1 0 4  
105 CONT l N U t  

S A L Z = ~ . D O  
CA~-Z=O.DO 
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a 

L O O 3  C O N T I N U E  
A O = C Z * C S   + C M O  
A 1 = 2 * D O * S Z * S T * S S   + C M O  
B O = - S Z * C T * C S  K M O  
B l = - S Z * S T * S S  +CMO 
C C O = A O  
CC 1 = B O  
C C 3 1 = A l  

C C 4 1 - 6 1  
C C 4 2 = 0 . D 0  

C C 3 2 = O * D O  

C C b l = O . U O  
C C 6 2 = 0 . 0 0  
C C 7 1 = 0 . D 0  
C C 7 2 = O . D 0  
D O 1 2 3  N=2 ,6 r2  
C ( N  ) = C F ( N  ) ~ ( I ( C C O * C H I ( l , N - l ) + C C l * C H I ( l , N ) ) ~ ~ 2  1 /L(1)+.5DO*((( 
1 C C 3 l ~ C H I ~ 2 ~ N ~ 1 ~ + C C 3 2 ~ C H I ~ 2 ~ N ~ ~ ~ ~ 2 + ~ C C 4 l ~ C H I ~ 2 ~ N ~ + C C 4 2 ~ C H I ~ 2 ~ N ~ l ~ ~ * ~  
l * 2  1 
2 / E ~ 2 ~ + ~ ~ C C 6 1 + C H 1 ~ 3 r N ~ l ~ + C C 6 2 ~ C H I ~ 3 t l V ~ ~ ~ ~ 2 + ~ C C 7 l * C H I ~ 3 ~ N ~ l ~ + C C 7 2 ~  
3 C H 1 ( 3 , N ) ) ~ * Z ) / t ( 3 ) ) )  

1 2 3  C O N T I N U t  
C F I N D I N G   S Q R T ( W k 1 G H T E U   M t A N   S O K   t K K U K   I - C N )   F U R  NU P A N E L   C A S t :  

K H = U S Q R T   ( R H )  : X M O  
S O K = K H  
H F = K T  

C S V ( 2 ) = C ( 2 )  
C S V ( 4 ) = C ( 4 1  
C S V ( 6 ) = C ( 6 )  

T S = l  
zs=z 
E P S I - S = O . U O  
XI- AMS=O.DO 

C U E (  1 ) = U ( l )  
C O E ( 2 ) = 0 ( 2 )  
C O E ( 3 ) = 0 ( 3 )  
C O E ( 4 ) = 0 ( 4 )  
C O E ( 5 ) = D ( 5 )  
C U E ( 6 ) = D ( 6 )  
I C = 6  

C C O M P O N E N T S  OF W E I G H T E O   M t A N   S O U A K t   t K K U K  I-UK NU P A N F L   C A S E  

C WOKST  CASE  ANGq-ES I-OK NU P A N t -   C A S t  

1101 C O N T I N U E  

C F A C T O R I N G   N O R M A L   I Z t U   C H A K A C T t K I S T I C   P U L Y N I I M I A L  
CA1-I- P K ~ M ( C O ~ , I C ~ X , Y I P O L , I R , I E K )  
X ( 6 ) = 0 .  
Y ( 6 ) = 0 .  
I F (   I E R ) 2 0 r 2 1 r 2 0  

C A I - T E R N A T E   M E T H O D  Ul- I - A C T U K I I U C ;   P U L Y P J O M I A L  
2 0  C O N T I N U E  

H = H A   ( M 4  ) 
Hz-H 
B = B G ( M 5 )  
Q = Q G (  M 6  1 
O M G = . 0 0 1 0 0  
X I = X I Z S ( M 7 )  
Q M A T ( l r l ) = O * D O  
Q M A T ( 1 , 3 ) = O . U O  
Q M A T ( 1 ~ 4 ) = 0 . 0 0  
Q M A T ( l , S ) = O . D O  
Q M A T  ( 5 1  1 )=O.DO 
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C 
C NORMAL I Z I N G  KUOTS 

DO 9 1 8 2   N F I N  ~ 1 ~ 5  
Y ( N F I N   ) = Y ( N F I N  )*1000. 
X ( N F 1 N   ) = X ( N F I N  )*1000. 

0 1 8 2   C O N T I N U E  
21 CONTINUE 

DAM= 100. 

X ( N R T ) = - X ( N R T )  

C F I N D I N G   L E A S T  DAMPED ROOT OF C H A R A C T t K I S T I C   P O L Y N O M I A L  

DO 1 6   N R T z l r 5  

I F  ( X ( N R T ) - D A M ) l 8 r l 6 r 1 6  
18  D A M = X I N R T )  

1 6   C O N T I N U E  
D A M F = Y ( N K T )  

UAMP  =DAM 
DAMPF=DAHF 

X I Z = X I Z S ( M 7 )  
6 CONT INUE 

KETURN 
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APPENDIX  E 

DEVELOPMENT OF THE  STATE  MATRIX FOR THE  EQUATION SET 
WITH DRIVEN SOLAR PANELS 

Let 

c, : - 1  

1E0(13) - I s ' /  . 
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where I (13) = f P 0 ( 3 1 ) .  PO 

After solving  the  second two equations  slmultaneonsly. 

After eliminat.ing x 3  and rearranging terms, the  equation  set.  can be written  directly i n  its state matrix 

form: 

x 1 = x JO) + x2( l )  + X3(O) + X4(O) + X5(O), 

208 



x 5  = X1(O) i X2(O) + X&O) + x4( l )  + x5(0) 

The elements of the system  state matrix are 
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a(33) = (- f )  , 
1 

g 

a(51) = 0 , 

a(52) = 0 . 
a(53) = 0 . 
a(54) = 1 , 

and 

a(55) = 0 . 
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APPENDIX F 

LISTING OF LINEAR  DIGITAL COMPUTER SIMULATION PROGRAM 

The  user  may substi tute  into  this  computer program any  parameter set of his  choosing.  Similarly, 

he  is free to  a l ter   the   ini t ia l   condi t ion  set   and  the  length of the  computer  run  by  making  the  appropri- 

ate  substi tutions.  In addi t ion,   th is  program can  be  used  to  make  disturbance  torque  runs  such as those  

described  in  Section (5.5) and  for  finding  Fourier  coefficients as defined  in  Section (5.7). With the 

exception of the  Fourier  coefficient  run,  the  only  computer  output is 5-in.  by  40-in.  Calcomp  computer 

plots  that  are automatically  scaled  for  each  variable. 

I M P L I C I T   R E A L * 8 ( A - H * U - Z , $ )  
RkAI -  *4  X , Y , T S S   * T T T  
D I M E N S I O N  X ( 6 0 1 0 ~ 4 ) ~ Y ( 6 0 1 0 ~ 4 ) ~ T S S ( ~ O 1 0 ~ ~ ~ ~ 8 ~ ~ ~ ~ 1 ( 8 ) ~ ~ ~ H ~ 8 ~  
D I M E N S I O N  F U U K ( 8 t 2 0 ) , T K I G ( 1 8 ) , T R I G L ( 1 8 )  * B ( 5 ~ 5 )  
F = 3 . 1 4 1 5 9 2 U 0 / 1 8 0 . U 0  
F I = 1 8 0 . D 0 / 3 . 1 4 1 5 9 2 D U  

C N F U K = O   B Y P A S S E S   F U U K I E K   C U t F F I C I t N T   R O U T I N t   K t F E K K t L J   T O  IN S t C T I U N  5.7 
C N F U K = l   A C T I V A T E S   F U U K I € R   C U E F F I C I E N T   R O U T I N E  

C M A Y D Y  I S  DO '.OUP 1 - I M I T  

C I . N P U T  I N  D E G K t E S  

N F U R = O  

M A Y D Y = 2  

GAMM=O.LJO 
P H I = O . D O  
P S I = O . U O  
P H I D = O . D 0  
P S I D = O . U O  

W = l . D - 3  
DO 99 N 5 = l r 2  
G O   T O   ( 2 0 1 9 2 0 2 * 2 0 3 ) 1 N 5  

CW I S   F R E Q U E N C Y  O F  T I M E   V A R Y I N G   C U E k F I C I k N T S ( D U N ' 1   S E T   E Q U A L   T O   Z E R L J )  

2 0 1  C O N T I N U E  
C A M P L I T U D E  OF M O M E N T U M   B I A S   V A K I A T I U N  

u=0.00 

D T = . 4 D O  

N S T O P = 5 0  

CINTEGRATION TIME INCREMENT IN sEcrllvus 

C N S T O P * D T = T H E   N U M B E R  UF S E C U N U S   B E T W E E N   t A C H   C O M P U T t U   P U I N T   T H A T   I S   P L O T T k I )  

C T O T A L   N U M B E R   O F   P L O T   P U I N T S  FOR t A C H   V A R I A B L E   M U S T  B E  L t S S   T H A N  6 0 0 0 .  
C S I M U I - A T   I O N   T I M E   O F F  IN S E C O N D S  

C O P T I M U M   P A R A M E T E R   S E T  FOR € X A M P L E  2 

c GAM appears  as p in  the  text.  

T M O F F = 9 0 0 0 0 . D O  

x12=200.00  

G A M = 2 2 0 0 . D 0 / 2 0 0 . D O  
A L   F = 2 3 2 5 . D 0 / 2 0 l l . D 0  
HO=-10 DO 
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BG=.7500  
X K G = l . D - 3  
BETA=O.DO 
P H I = l O . D O  
P S   I = l O . D O  
GO T O  299 

2 0 2  C O N T I N U E  
C O P T I M U M   P A R A M E T E R   S E T   F O R   E X A M P L E  1 

G A M = 2 0 1 0 . 0 0 / 1 O . U O  
A L   F = .   7 5 D O * G A M  
H O = - 2 . 5 0 0  
X I Z = l O . U O  
B G = .  7 5 0 0  
X K G = . 3 3 D - 2  
B E T A = O . D O  
P H I = 1 0 . 0 0  
P S  I = 1 0 . ~ 0  
G O   T O  299 

2 0 3  C O N T  I N U t  
299 C O N T  I N U f  

C N S T E P  I S  I N C R I M E N T € U   O N C E   t A C H   T I M E   S T t P  
N S T E F = N S T O P  
S B = D S I N ( B E T A )  
C B = U C O S ( B E T A )  
S S B = S B * S B  
C SB=C B * C  B 
DO 9959 M A Y = l r M A Y U Y  
c=o.oo 
I F  ( N F O R ) 9 1 2 3 r 6 8 0 5 , 9 1 2 3  

9 1 2 3  C O N T I N U E  
C P E R   I S   T W I C E   T H E   P E R I O U  O F  T H E   P E K I U D I C   C O k F f I C I E N T S  I N  S E C O N D S  

P E R = 4 . D O * 3 . 1 4 1 5 9 2 0 0 / W  
P K U = P E K  
wu= w*u 
DO 6805  N T = l r 1 7  
D O  6806 N f = l r 8  
F O U R ( N f r N T ) = O . 0 0  

6 8 0 6  C O N T I N U E  
6 8 0 5  C O N T I N U E  

T=O.   DO 
C I N I T I A I -   C O N D I T I O N S  
C O I  I S  T H E   I N T E G R A L  Of €I 

Q I ( l ) = P H I * f  
Q I ( Z ) = P H I D * F  
6) I ( 3 1 = G A M M * f  
Q I ( 4 ) = P S I D * f  
Q I ( 5 ) = P S I * F  

C C A K D S   W I T H   ( * * * ) A K €   U S t U  FUR S I N U S O I D A L   D I S T U R B A N C E S ,   w H I L t   C A R D S   h I T H  
C(*) ARF: I J S E D   F O R   S Q U A R F   W A V E   U I S T U K B A N C E S  
C V A R I A T I O N A L   M O M E N T U M   B I A S  

C D E R I V A T I V E  O f  V A R I A T I U N A L   M O M E N T U M   H I A S  

C WA=U*W 4 4 . D 0 / 3 . 1 4 1 5 9 2 0 0  

A=O.DO 

WA=U*W 

DO 114 l , l = l r 5  
D O  114 1,2=lr5 

114 B(I ,  1 r!L2 )=O.DO 
C S Y S T E M  A M A T R I X  

B ( l r 2 ) = 1 . D O  
B ( ~ T ~ ) = ( ~ . D - ~ / A L F ) * ( ~ . U - ~ * ( ~ . ~ ~ - G A M ) + ( H O + A ) / X I Z )  

l - ( S ~ * C B ~ ( H O + A ) * * 2 ) / ( A L f * X I Z * B G ~ 1 . ~ 3 )  
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6 9 0 2   C O N T I N U E  

69 11 C O N T  I NUE 
IF(DABS(T-PRD)-~lDO)6911~6910~691O 

C I r N H I B I T  T O  ALLOW I N I T I A L   T R A N S I E N T  TU D I E  DUWN 
I F ( T - 1 8 3 4 8 0 . 0 0 ) 6 7 1 1 q 6 7 1 2 ~ 6 7 1 2  

6 7 1 2   C O N T I N U E  
DO 6 7 3 0   N 1 2 = l r 5  
DO 6 7 3 5   N 1 5 = 2 , 9  
N 2 0 = N 1 5 + 8  
F O U R ( N 1 2 ~ N l 5 ) = F O U R ( N 1 2 , N 1 5 ) = r 2 + F U U R ( N 1 2 , N 2 0 ~ ~ ~ 2  
F O U R ( N 1 2 ~ N l S ) = D S Q R T ( F O U ~ ~ ~ 1 2 ~ N l 5 )  1 

6 7 3 5   C O N T I N U E  
6 7  3 0  CONT I NUE 
6 9 2 5   F O R M A T ( '   M A G N I T U D E  OF F U U R I E R   C O E F F I C I E N T S  FOR SYSTEM  STATES 1 THR 

1 U 5 r  DC THRU E I G T H  HARMONIC  RESPECTIVELY' )  
W K I T E ( 6 r 6 9 2 5 )  
~ R I T E ( ~ , ~ ~ ~ ~ ) ( ( F O U R ( ~ F , N T ) T N F = ~ T ~  ) t ~ \ c T = l ~  9 )  

6 9 2 6   F O K k A T ( 5 U 1 4 . 6 )  
6 7 1 1   C O N T I l v U E  

CI.i\ICREMENT PERIOD FUR FOURIER  INTEGRATION AND I N I T I A I - I Z A T I O N  UF SAME 
PRD=PRD+PER 
D O  6 9 0 5   l N T = l ,  17  
D O  6 9 0 6   N F = 1 , 6  
fDUR(Nf ,NT)=O.UO 

6 9 0 6  CONTINUE 
6 9 0 5  CONT INUE 
6 9  10 CONTINUE 

CIBNTEGRATION C F  STATE  EUUATIOIN 7 Q I  I S  INTEGRAI, OF 'J 
DO 2 0 0 2  N 2 = 1 1 5  

2 0 0 2  OI(l~2)=OI(N2)+(3.00~O(N2)-QH(NZ))=(DT/2.D0~ 
N T I M = N T I M + l  
I F ( N T 1 ~ - 1 0 0 0 ) 3 1 ~ 3 2 , 3 2  

32  C=C+l.DO 
NT I M = O  

3 1   C O N T I N U E  

100 CUlvT I NUE 
1 F ( T - T M 0 F F ) 1 9 ~ 1 9 ~ 1 0 0  

NXY=NXY-1 
CPLOT  ROUTINE  REQUIKES A CALCOMP 5 6 5 / 5 7 0   P L U T T E R   A N 0   A S S O C I A T t D  SUBPROGRAMS 

CA'- l -  P-OTXY ( X  r Y  r T S S r N X Y  1 
NXY= 1 

9 1 2 3   C O N T I N U E  
CKESET I N I T I A L   C O N D I T I O N S  

PHI=5.DO 
P S I = 5 . D 0  

9 9 5 9  CONT INUE 
99 CONT INUE 

C 
CAI-I- C A L  999 
CONT INUE 
RETURN 
END 

S U H K O U T I N t   P L O T X Y   ( X T Y , ~ S S ~ N X Y )  
CFUK 1- I S T I N G  7 S t t  APPENUIX G 
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APPENDIX G 

LISTING OF NONLINEAR  DIGITAL COMPUTER  SIMULATION PROGRAM 

The  user may substitute  into  this computer  program  any parameter set and  any initial condition 

set of his choosing. He is  also free  to  alter the problem simulation  time.  Disturbance  torque runs 

can be  made by assuming nonzero amplitudes for the  disturbance  torque  coefficients. 

The only computer output is 5-in. by 40-in. Calcomp  computer plots t.hat are  automatically  scaled 

for each  variable. 

I M W -   I C I T   R E A I - ' F H ( A - H T U - Z T $ )  
R E A L  e 4  X T Y T T S S  
D I M E N S I O N  X ( ~ O ~ ~ T ~ ) , Y ~ ~ ~ L ~ T ~ ) T T S S ( ~ ~ ~ ~ ) T O ~ ~ ) T ~ ~ I ~ ~ ) T ( ~ H ~ ~ )  
D O  99 N 5 = 1 ~ 2  
F = 3 . 1 4 1 5 9 2 0 0 / 1 8 0 . 0 0  
F I = 1 8 O . D O / 3 . 1 4 1 5 9 2 U O  

M A Y U Y = 2  

A M X D C = 0 . 0 0  
AMYDC=O.DO 
A M Z l ) C = O . 0 0  
A M X = O . 0 0  
AMY=O.OO 
AMZ=O.OO 
W=.OOlDO 
O M E G A = 1 . 0 - 3  

A = O . 0 0  
T = O  00 

C L I M I T  DF DO I -OUP 300 

C A P i P - I T U D E  O F  D l S T U K H A N C t   T U K O U t S   A T  DC A N D  i.r K A U / S k C  R t S P t C T I V t L Y  

C K E S E T   I N I T I A L   C U N D I T I U N S  

C S I M U I - A T I O N   T I M E  UFF I N  S E C U N U S  

C I N P U T  I N  D E G R E E S  
T M U F F = 9 0 0 0 0 . D 0  

GAMM=O.DO 
P H I = 1 0 . 0 0  
P S I = 1 0 . 0 0  
P S   I D = O . O O  
P H I D = O . D O  

X 1 5 = O . D O  

X 1 6 = 0 . 0 0  

2 0 1  C O N T I N U E  

C P I T C H   K A T E  

C P I T C H   P O S I T I O N  

G O   T O  ( 2 0 1 , 2 0 2 ~ 2 0 3 ) 1 N 5  

C O P T I M U M   P A R A M E T E R   S E T  F O R  k X A M P L t  2 
x1scx=2325.00 
X I S C Y = 2 2 0 0 . 0 0  
x1scz=200.00 
X K G I = 1 . 0 - 3  
C=.  7500  
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B I A S = - l O . D O  
B E T A = O . D O  

C I I N T E G R A T   I O N   T I M E   I N C R € M E N T  I N  S E C O N D S  
D T =  .4DO 

N S T O P = 5 0  

GO  TO 2 9 9  

C H S T O P * D T = T H E   N U M B E R  O f  S E C O N D S   B E T W E E N   E A C H   C O M P U T E D   P O I N T   T H A T  I S  P L O T T E D  

C T O T A "   N U M B E K  OF P L O T   P O I N T S   F U R   E A C H   V A R I A B L E   M U S T  Bk L E S S   T H A N  6000. 

2 0 2   C O N T   I N U E  
C O P T I M U M   P A R A M E T E R   S t T   F O R   k X A M P l - E  1 

x I s c Y = 2 0 1 0 . u O  
X I S C X = X I S C Y a . 7 5 0 0  
X I S C Z = l O . D O  
X K G I = . 3 3 0 - 2  
C = . 7 5 D O  
B I A S = - 2 . 5 D O  
B E T A = O . D O  
G O   T O   2 9 9  

2 0 3   G O U T   I N U E  
2 9 9   C O N T I N U E  

DO 300 N C S = l , M A Y D Y  
C B = D C O S (  B E T A )  
S B = D S I N ( B E T A )  

C t u S T € P  I S  I N C R I M E N T k U  ONCE E A C H   T I M E   S T E P  
N S T € P = N S T U P  

C W H E E L   R E A C T   I O N   T O R Q U k  
X 1 1 = O . U 0  

CwHEEL M O M E N T U M  
X l O = B I A S  

X 1 5 = O . D 0  
X 1 6 ~ 0  DO 

C 
C I * N I T   I A L   C O N O I T   I O N S  
CUI I S  T H E   I N T E G R A L  U t  Q 

Q I ( l ) = G A M M * F  
S P H I = D S I N ( P H I * F )  
C P H I = D C O S ( P H I = F )  
S X 1 6 = D S I N ( X l 6 + F )  
C X 1 6 = D C O S i X 1 6 * F )  
S P S I = D S I N ( P S I * F )  
C P S I = D C O S ( P S I + F )  
S G = D S I I U (  Q I  ( 1 )  1 
C G = D C O S ( Q I  i 1 )  1 
Q I ( 2 ) = - P S I D * F + S X 1 6 * C P H I + P H I + P H l 0 * ~ * C X l 6 -  ( C X 1 6 ? S P S I + S X 1 6 = S P H I ~ C P S  

Q I ( 3 1 = P S I D + F + S P H I + X l ~ ~ F -  ( C P H I * C P S I  j21.0-3 
QI~4~~PSID*F~CXl6~CPHI+PHIDeF3SX16-(SXl6-iSXl6~SPSl-CXl6~SPHI~CPSI~~l.D 

Q 1 ( 5 ) = P H I * F  

Q I ( 7 ) = P S I * F  

1 I ) * l . D - 3  

1-3 

3 1 2  Q 1 ( 6 ) = 0 . 0 0  

C U I K E C T I O N   C O S I N E S  
D C l l = C X 1 6 * C P S I - S X 1 6 ~ S P H I = S P S I  
UC12=CX16*SPSI+SX16*SPHI~CPSl 
DC 1 3 = - S X 1 6 * C P H I  
D C Z 1 = - S P S I * C P H I  
U C 2 2 = C P H I * C P S I  
D C 2 3 = S P H I  
D C 3 1 = S X 1 6 * C P S I + C X 1 6 s S P H l ~ S P S I  
O C 3 2 = S X 1 6 + S P S I - C X 1 6 ~ S ~ H I ~ C ~ S I  
DC 3 3 = C  X 1 6 * C   P H  I 
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C G I M B A L   E Q U A T I O N ( G A M M A   D U T )  

C T l X   E Q U A T I O N (  WX D O T )  
O ~ 1 ~ ~ ~ X 1 O ~ ~ S B * C G * Q I ~ 2 ~ - S G * Q I ~ 3 ) + C ~ ~ C ~ ~ Q l ( 4 ~ ) - X K G I ~ Q l ( l ) ) / C  

O ~ 2 ~ ~ ~ Q 1 ~ ~ ~ ~ 0 1 ~ 4 ~ * ~ X I S C Y - X I S C Z ~ + 3 . U O * U M ~ G A ~ U M ~ ~ A * ( X I ~ C ~ - X I S C Y ~ ~ D C Z  
1 3 * U C  33 
1 + C B * ( X K G I * O I ( l ) + C  + Q ~ 1 ~ ~ + S ~ * S G ~ X 1 1 - S B ~ C G r X 1 O U o + C B *  O I ( 2 l - S B  
2 * 0 I ( 4 ) ) ) / X I S C X  

C T l Y   k Q U A T I O N   ( W Y   D O T )  
Q ~ 3 ) = ~ Q 1 ( 4 ) * Q I ( 2 ) * ~ X I S C Z - X I S C X ) + 3 . U ~ * U M E G A ~ ~ M E ~ A ~ ( ~ I S C X - X I S C Z ~ + D C  

1 1 3 ~ U C 3 3 + C G ~ X l 1 + S G ~ X l O ~ ~ ~ ~ l ~ + C ~ ~ ~ Q I ~ 2 ~ - S B ~ 0 l ~ 4 ~ ~ ~ / X l S C Y  
C T l Z   E Q U A T I O N  ( W Z  D O T )  

Q ( 4 ) = ( Q I ( 2 ) * O I ( 3 ) * ( X I S C X - X I S C Y ) + 3 . D O * U M ~ G A ~ ~ M ~ G A ~ ~ X I S ~ Y - X I S C X ) + D C  
113*DC23-SB*(XKGI+OI(l)+C *Q(lt)+CB+SG*Xll-CB*CGoXlOe(U(1)+C~~QI~2t 
Z - S B * Q I ( 4 ) ) ) / X I S C Z  

C P H I  DOT E Q U A T I O N  
0(5)=CX16*QI(Z)+SX16~~1(4)+SPSI~l.D-3 
IF(DABS(CPH1)-.00100163v64~64 

6 3  W R I T E ( 6 1 6 5 )  
C P H I = D S I G N (   . 0 0 1 0 0 ~ C P H I )  

6 5  f O K M A T ( / / / 4 0 X v l l H G I M B A L   L U C K / / / / / )  
6 4  C O N T   I N U E  

C P S I  DOT E Q U A T I O N  

C T H E T A   D O T   E Q U A T I O N  
42  0 ( 6 ) = O . D O  

N T   I M = 1  
N X Y  = 1 

19 C O N T I N U E  

Q(7)=(CX16sQI(4)-SX16~Q1~2)-S~~I*CPSI~l.D-3)/CPHI 

C T O P  OF I N T E G R A T I O N   S C H E M E  

X T   I M = N T   I M  
T = D T * l O O O . D O % A + D T * X T I M  

S G = D S I N ( Q I ( l ) )  
C G = U C O S ( Q I ( l ) )  
S P H I = U S I N ( Q I ( 5 ) )  
C P H I = D C O S ( Q I ( 5 ) )  
S X 1 6 = U S I N ( Q 1 ( 6 ) )  
C X l 6 = D C O S ( Q I  ( 6 )  1 
S P S I = D S I h ( O I ~ 7 ) )  
C P S I = D C U S ( Q I ( 7 ) 1  
D C l l = C X l 6 * C P S I - S X 1 6 * S P H I = S P S I  
DC12=CX16*SPSI+SX16*SPHI~CPSI 
D C 1 3 = - S X 1 6 * C P H I  
D C 2 1 = - S P S I * C P H I  
D C 2 2 = C P H I q C P S I  
O C 2 3 = S P H I  
OC31=SX16*CPSI+CX16+SPHI*SPSI 
D C 3 2 = S X 1 6 * S P S I - C X l b * S P H I g C P S I  
D C 3 3 = C X l 6 * C P H I  

C U N I T S   A R E   R A D I A N S  

IF(NSTEP-NSTOP)500vSOlv501 
5 0 1  C O N T I N U E  

N S T E P = O  
X ( N X Y , l ) = X l O  
Y ( N X Y T ~ ) = Q I I S ) * F I  
X ( N X Y v 2 ) = 0 1 ( 7 ) * F I  
Y ( N X Y v 2 ) = O l ( l ) * F I  

C C A N   D E F I N E   X ( N X Y v 3 A N D 4 1   A N D   Y ( N X Y v 3 A N D 4 )  I F  D E S I R E D  
T S S l N X Y ) = T / 6 0 .  
N X Y = N X Y +  1 

N S T E P = N S T E P + l  
S O 0  C O N T  I NU€ 
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C X l l  I S  N H E E "   T O R Q U E   A S  I T   A P P E A R S   O N   V E H I C L E  
C H o L  D L A S T   I N T E G R A T I O N   S T t P  

D O  2001  N l = l r 7  
2001 QH( N 1 )  =6)( N 1 )  

C N E X T   T I M E   S T E P  
C D I   S T U R B A N C t   T O R Q U E S  

T D X = A M X * U S I N ( W * T ) + A M X U C  
T D Y = A M Y * D S I N ( W * T I + A M Y U C  
T U Z = A M Z * D S I N ( W * T ) + A M Z D C  

Q ~ 1 ) = ~ X l O * ( S B * C G ~ Q I ~ 2 ) - S G * Q I ~ 3 ~ + C ~ ~ C G * ~ I ~ 4 ~ ~ - X K G I * ~ I ~ l ~ ~ / C  

0 ~ 2 ) = ( Q I ~ 3 ) * 0 1 ( 4 ) * ~ X I S C Y - X I S C Z ) + 3 . U O o O M E G A ~ O M ~ t i A * ~ X I S C Z - X I S C Y ~ * D C 2  

C S E E  A B O V E   C O M M E N T S  

C X 1 1  I S  M I N U S   W H E E L   T O R O U t  

1 3 * D C 3 3  
1 + C H * ( X K G I * Q I ( l ) + C  ~ Q ~ 1 ) ) + S B ~ S G ~ X 1 1 - S B * C G * X l O * ~ Q ~ l ~ + C B =  Q I ( 2 ) - S B  
2 * Q 1 ( 4 ) ) ) / X I S C X   + T D X  

1 1 3 ~ U C 3 3 + C G ' ~ X l l + S G * X l O * ~ ~ ~ l ~ + C B * ~ I  ( 2 ) - S B * Q I  ( 4 )  I ) / X I S C Y + T D Y  
~ ( 3 ) = ( Q I ( 4 ) ~ O I ( 2 ) ~ ( X I S C Z - X I S C X ) + 3 . D O * U M E G A ~ U M ~ ~ A ~ ~ X I S C X - X l S C Z ) ~ D C  

~ ( 4 ) = ( Q I ( 2 ) * B I ( 3 ) + ( X I S C X - X I S C Y ) + 3 . D 0 * U ~ E G A ~ D M E t i A * ( X I S C Y - X I S C X ) ~ D C  
113*DC23-Sh*(XKGI*QI(l)+C * Q ~ l ) ) + C B ~ S G * X 1 1 - C B * C G + X l O a o + C B c Q I ( Z ~  
2 - S B * Q I ( 4 ) ) ) / X I S C Z + T U Z  
4(5)=CXl6*QI(2)+SX16*6)1(4)+SPSI*l.D-3 
1F(DABS(CPH1)-.00lD0)73~74T74 

7 3  W R I T E ( 6 9 7 5 J  
C P H I = D S I G N (   . 0 0 1 0 0 ~ C P H I )  

7 5  F O R M A T ( / / / 4 0 X t l l H G I M B A L   L U C K / / / / / )  
74 C O N T I N U E  

67  0 (6)=0.00  
0 ~ 7 ~ ~ ~ C X 1 6 ~ ~ 1 ~ 4 ~ - S X 1 6 0 Q I o - S P H I o C P S 1 9 1 . U - 3 ~ / C ~ H 1  

C I N T E G R A T I O N  
Do 2002 N2=117 

2002  O I ( N 2 ) = Q I ( N 2 ) + ( 3 . 0 0 ~ Q ( N 2 ) - O H ( N 2 ) ) * ~ ~ T / 2 . D 0 )  
DO 12 N 3 = 5 9 7  
I F ~ D A B S ~ Q I ~ N 3 ~ ~ ~ 3 ~ 1 4 1 ~ 9 D O ~ 1 2 t l 2 t l l  

11 O I ~ N 3 ~ ~ O I ~ N 3 ~ ~ O S I G N ~ 6 ~ 2 ~ 3 l ~ O O t 6 ) I ~ N 3 ~ ~  
12 C O N T I N U E  

N T   I M = N T   I M + 1  
I F ( N T I M - l 0 0 0 ) 3 1 r 3 2 t 3 2  

3 2  A = A + l . D O  
N T  I M=O 

3 1  C O N T I N U E  

100 C O N T I N U E  
1 F ( T - T M O F F ) 1 9 ~ 1 9 t 1 0 0  

N X Y = N X Y - l  
C P L U T   R O U T I N E   R E Q U I R E S  A C A L C O M P  5 6 5 1 5 7 0  P L U T T E K   A N D   A S S O C I A T E D   S U B P R O G R A M S  

C A L L   P L O T X Y   ( X t  Y t  T S S T N X Y  1 
89 C O N T   I N U E  

C R f S E T   I N I T I A L   C O N D I T I O N S  
P H 1 = 5 . D 0  
P S I = S . D O  

300 C O N T   I N U E  
99 C O N T I N U E  

CALL C A I - 9 9 9  
C O N T I N U E  
R E T U R N  
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